一种新的图像识别深度模型

Ming Zhu, Yan Wu
{"title":"一种新的图像识别深度模型","authors":"Ming Zhu, Yan Wu","doi":"10.1109/ICSESS.2014.6933585","DOIUrl":null,"url":null,"abstract":"In this paper we propose a hybrid deep network for image recognition. First we use the sparse autoencoder(SAE) which is a method to extract high-level feature representations of data in an unsupervised way, without any manual feature engineering, and then we perform the classification using the deep belief networks(DBNs), which consist of restricted Boltzmann machine(RBM). Finally, we implement some comparative experiments on image datasets, and the results show that our methods achieved better performance when compared with neural network and other deep learning techniques such as DBNs.","PeriodicalId":6473,"journal":{"name":"2014 IEEE 5th International Conference on Software Engineering and Service Science","volume":"33 1","pages":"373-376"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel deep model for image recognition\",\"authors\":\"Ming Zhu, Yan Wu\",\"doi\":\"10.1109/ICSESS.2014.6933585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a hybrid deep network for image recognition. First we use the sparse autoencoder(SAE) which is a method to extract high-level feature representations of data in an unsupervised way, without any manual feature engineering, and then we perform the classification using the deep belief networks(DBNs), which consist of restricted Boltzmann machine(RBM). Finally, we implement some comparative experiments on image datasets, and the results show that our methods achieved better performance when compared with neural network and other deep learning techniques such as DBNs.\",\"PeriodicalId\":6473,\"journal\":{\"name\":\"2014 IEEE 5th International Conference on Software Engineering and Service Science\",\"volume\":\"33 1\",\"pages\":\"373-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 5th International Conference on Software Engineering and Service Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2014.6933585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 5th International Conference on Software Engineering and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2014.6933585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于图像识别的混合深度网络。首先,我们使用稀疏自编码器(SAE),这是一种以无监督的方式提取数据的高级特征表示的方法,无需任何手动特征工程,然后我们使用由受限玻尔兹曼机(RBM)组成的深度信念网络(dbn)进行分类。最后,我们在图像数据集上进行了一些对比实验,结果表明,与神经网络和其他深度学习技术(如dbn)相比,我们的方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel deep model for image recognition
In this paper we propose a hybrid deep network for image recognition. First we use the sparse autoencoder(SAE) which is a method to extract high-level feature representations of data in an unsupervised way, without any manual feature engineering, and then we perform the classification using the deep belief networks(DBNs), which consist of restricted Boltzmann machine(RBM). Finally, we implement some comparative experiments on image datasets, and the results show that our methods achieved better performance when compared with neural network and other deep learning techniques such as DBNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信