{"title":"太阳上粒子接收器试验的仿真与性能评价","authors":"Brantley Mills, C. Ho","doi":"10.1063/1.5117548","DOIUrl":null,"url":null,"abstract":"A set of on-sun experiments was performed on a 1 MWth cavity-type falling particle receiver at Sandia National Laboratories. A computational model of the receiver was developed to evaluate its ability to predict the receiver performance during these experiments and to quantify the thermal losses from different mechanisms. Mean particle outlet temperatures and the experimental receiver thermal efficiencies were compared against values computed in the computational model. External winds during the experiments were found to significantly affect the receiver thermal efficiency, and advective losses from hot air escaping the receiver domain were found to be the most significant contribution to losses from the receiver. Losses from all other mechanisms including radiative losses amounted to less than 10% of the total incident thermal power.A set of on-sun experiments was performed on a 1 MWth cavity-type falling particle receiver at Sandia National Laboratories. A computational model of the receiver was developed to evaluate its ability to predict the receiver performance during these experiments and to quantify the thermal losses from different mechanisms. Mean particle outlet temperatures and the experimental receiver thermal efficiencies were compared against values computed in the computational model. External winds during the experiments were found to significantly affect the receiver thermal efficiency, and advective losses from hot air escaping the receiver domain were found to be the most significant contribution to losses from the receiver. Losses from all other mechanisms including radiative losses amounted to less than 10% of the total incident thermal power.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Simulation and performance evaluation of on-sun particle receiver tests\",\"authors\":\"Brantley Mills, C. Ho\",\"doi\":\"10.1063/1.5117548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of on-sun experiments was performed on a 1 MWth cavity-type falling particle receiver at Sandia National Laboratories. A computational model of the receiver was developed to evaluate its ability to predict the receiver performance during these experiments and to quantify the thermal losses from different mechanisms. Mean particle outlet temperatures and the experimental receiver thermal efficiencies were compared against values computed in the computational model. External winds during the experiments were found to significantly affect the receiver thermal efficiency, and advective losses from hot air escaping the receiver domain were found to be the most significant contribution to losses from the receiver. Losses from all other mechanisms including radiative losses amounted to less than 10% of the total incident thermal power.A set of on-sun experiments was performed on a 1 MWth cavity-type falling particle receiver at Sandia National Laboratories. A computational model of the receiver was developed to evaluate its ability to predict the receiver performance during these experiments and to quantify the thermal losses from different mechanisms. Mean particle outlet temperatures and the experimental receiver thermal efficiencies were compared against values computed in the computational model. External winds during the experiments were found to significantly affect the receiver thermal efficiency, and advective losses from hot air escaping the receiver domain were found to be the most significant contribution to losses from the receiver. Losses from all other mechanisms including radiative losses amounted to less than 10% of the total incident thermal power.\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation and performance evaluation of on-sun particle receiver tests
A set of on-sun experiments was performed on a 1 MWth cavity-type falling particle receiver at Sandia National Laboratories. A computational model of the receiver was developed to evaluate its ability to predict the receiver performance during these experiments and to quantify the thermal losses from different mechanisms. Mean particle outlet temperatures and the experimental receiver thermal efficiencies were compared against values computed in the computational model. External winds during the experiments were found to significantly affect the receiver thermal efficiency, and advective losses from hot air escaping the receiver domain were found to be the most significant contribution to losses from the receiver. Losses from all other mechanisms including radiative losses amounted to less than 10% of the total incident thermal power.A set of on-sun experiments was performed on a 1 MWth cavity-type falling particle receiver at Sandia National Laboratories. A computational model of the receiver was developed to evaluate its ability to predict the receiver performance during these experiments and to quantify the thermal losses from different mechanisms. Mean particle outlet temperatures and the experimental receiver thermal efficiencies were compared against values computed in the computational model. External winds during the experiments were found to significantly affect the receiver thermal efficiency, and advective losses from hot air escaping the receiver domain were found to be the most significant contribution to losses from the receiver. Losses from all other mechanisms including radiative losses amounted to less than 10% of the total incident thermal power.