克服地下储气库发展中的挑战

A. Alali, H. Aljamaan, Mahbub S. Ahmed, Hanan Alomani
{"title":"克服地下储气库发展中的挑战","authors":"A. Alali, H. Aljamaan, Mahbub S. Ahmed, Hanan Alomani","doi":"10.2118/200300-ms","DOIUrl":null,"url":null,"abstract":"\n Subsurface gas storage is a strategic tool used to balance seasonal sales gas supply and demand fluctuations. Developing and managing gas storage reservoirs requires the application of standard reservoir engineering tools and practices; however, a number of additional challenges are specific to Underground Gas Storage (UGS). This paper addresses these challenges and present both modelling, design, and operational solutions. There are important considerations and challenges that can be associated with areas such as reservoir selection, surface-subsurface modelling, and optimum number of wells with the best design in gas storage reservoirs. Nevertheless, operational challenges can also be very critical and lead to jeopardizing the success of the project, if not mitigated properly. Due to the cyclic nature of gas storage during injection and re-production, cyclic stress effects can be a concern and should be studied via appropriate geomechanical models and laboratory tests (Thick-Walled-Cylinder) to address any imapct on wellbore stability and potential sand/solid production. Although mature gas reservoirs are good candidates for underground gas storage, drilling any new wells can be challenging and has to be addressed using state of the art technologies such as managed-pressure-drilling (MPD) or under-balance-coiled-tubing drilling (UBCTD). The well completion in terms of material selection and design will also impact the workover frequency and productivity/injectivity of the gas storage wells. As such, accurate evaluation of flow assurance and completion accessories are essential to ensure long term suitability of the gas storage wells. Last but not least, due to the lean nature of the gas in these developments, the risk of hydrates formation is very likely and should be analyzed and mitigated with the right engineering tools. This work presents the basic theory and applications of the above-mentioned methods and evaluations with the ultimate goal of proposing general guidelines for the development of UGS. The results and interpretations of geomechanical modelling and laboratory testing are presented as well as the drilling design and its challenges. Well integrity and erosional velocity assessment are discussed as part of the flow assurance as well as hydrates formation envelopes and its prediction methods. Gas storage projects are strategic for gas operating companies and require careful planning and economic feasibility evaluation. The challenges and lessons learnt, discussed in this paper, are required to guarantee the success of such initiative.","PeriodicalId":10912,"journal":{"name":"Day 3 Wed, March 23, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming Challenges in the Development of Underground Gas Storage\",\"authors\":\"A. Alali, H. Aljamaan, Mahbub S. Ahmed, Hanan Alomani\",\"doi\":\"10.2118/200300-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Subsurface gas storage is a strategic tool used to balance seasonal sales gas supply and demand fluctuations. Developing and managing gas storage reservoirs requires the application of standard reservoir engineering tools and practices; however, a number of additional challenges are specific to Underground Gas Storage (UGS). This paper addresses these challenges and present both modelling, design, and operational solutions. There are important considerations and challenges that can be associated with areas such as reservoir selection, surface-subsurface modelling, and optimum number of wells with the best design in gas storage reservoirs. Nevertheless, operational challenges can also be very critical and lead to jeopardizing the success of the project, if not mitigated properly. Due to the cyclic nature of gas storage during injection and re-production, cyclic stress effects can be a concern and should be studied via appropriate geomechanical models and laboratory tests (Thick-Walled-Cylinder) to address any imapct on wellbore stability and potential sand/solid production. Although mature gas reservoirs are good candidates for underground gas storage, drilling any new wells can be challenging and has to be addressed using state of the art technologies such as managed-pressure-drilling (MPD) or under-balance-coiled-tubing drilling (UBCTD). The well completion in terms of material selection and design will also impact the workover frequency and productivity/injectivity of the gas storage wells. As such, accurate evaluation of flow assurance and completion accessories are essential to ensure long term suitability of the gas storage wells. Last but not least, due to the lean nature of the gas in these developments, the risk of hydrates formation is very likely and should be analyzed and mitigated with the right engineering tools. This work presents the basic theory and applications of the above-mentioned methods and evaluations with the ultimate goal of proposing general guidelines for the development of UGS. The results and interpretations of geomechanical modelling and laboratory testing are presented as well as the drilling design and its challenges. Well integrity and erosional velocity assessment are discussed as part of the flow assurance as well as hydrates formation envelopes and its prediction methods. Gas storage projects are strategic for gas operating companies and require careful planning and economic feasibility evaluation. The challenges and lessons learnt, discussed in this paper, are required to guarantee the success of such initiative.\",\"PeriodicalId\":10912,\"journal\":{\"name\":\"Day 3 Wed, March 23, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, March 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/200300-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/200300-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地下储气库是一种战略工具,用于平衡季节性销售天然气的供需波动。开发和管理储气库需要应用标准的储气库工程工具和实践;然而,地下储气库(UGS)还面临着一些额外的挑战。本文解决了这些挑战,并提出了建模、设计和操作解决方案。在储层选择、地表-地下建模以及最佳设计的最佳井数等方面,存在一些重要的考虑因素和挑战。然而,操作上的挑战也可能是非常关键的,如果不能得到适当的缓解,可能会危及项目的成功。由于注入和再生产过程中储气的循环特性,循环应力效应可能是一个值得关注的问题,应该通过适当的地质力学模型和实验室测试(厚壁圆柱体)进行研究,以解决对井筒稳定性和潜在砂/固体产量的任何影响。虽然成熟气藏是地下储气库的理想选择,但钻井任何新井都具有挑战性,必须使用最先进的技术,如控压钻井(MPD)或欠平衡连续油管钻井(UBCTD)。完井材料的选择和设计也会影响储气井的修井频率和产能/注入能力。因此,对流动保障和完井附件的准确评估对于确保储气井的长期适用性至关重要。最后但并非最不重要的是,由于这些开发项目中天然气的稀薄性质,水合物形成的风险非常大,应该通过正确的工程工具进行分析和减轻。本文介绍了上述方法和评价的基本理论和应用,最终目的是为UGS的发展提出一般指导方针。介绍了地质力学建模和实验室测试的结果和解释,以及钻井设计及其挑战。井的完整性和侵蚀速度评价作为流动保障的一部分进行了讨论,水合物地层包络层及其预测方法。储气库项目对天然气运营公司来说具有战略意义,需要仔细规划和经济可行性评估。本文讨论的挑战和经验教训是保证这一倡议成功所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming Challenges in the Development of Underground Gas Storage
Subsurface gas storage is a strategic tool used to balance seasonal sales gas supply and demand fluctuations. Developing and managing gas storage reservoirs requires the application of standard reservoir engineering tools and practices; however, a number of additional challenges are specific to Underground Gas Storage (UGS). This paper addresses these challenges and present both modelling, design, and operational solutions. There are important considerations and challenges that can be associated with areas such as reservoir selection, surface-subsurface modelling, and optimum number of wells with the best design in gas storage reservoirs. Nevertheless, operational challenges can also be very critical and lead to jeopardizing the success of the project, if not mitigated properly. Due to the cyclic nature of gas storage during injection and re-production, cyclic stress effects can be a concern and should be studied via appropriate geomechanical models and laboratory tests (Thick-Walled-Cylinder) to address any imapct on wellbore stability and potential sand/solid production. Although mature gas reservoirs are good candidates for underground gas storage, drilling any new wells can be challenging and has to be addressed using state of the art technologies such as managed-pressure-drilling (MPD) or under-balance-coiled-tubing drilling (UBCTD). The well completion in terms of material selection and design will also impact the workover frequency and productivity/injectivity of the gas storage wells. As such, accurate evaluation of flow assurance and completion accessories are essential to ensure long term suitability of the gas storage wells. Last but not least, due to the lean nature of the gas in these developments, the risk of hydrates formation is very likely and should be analyzed and mitigated with the right engineering tools. This work presents the basic theory and applications of the above-mentioned methods and evaluations with the ultimate goal of proposing general guidelines for the development of UGS. The results and interpretations of geomechanical modelling and laboratory testing are presented as well as the drilling design and its challenges. Well integrity and erosional velocity assessment are discussed as part of the flow assurance as well as hydrates formation envelopes and its prediction methods. Gas storage projects are strategic for gas operating companies and require careful planning and economic feasibility evaluation. The challenges and lessons learnt, discussed in this paper, are required to guarantee the success of such initiative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信