磁静力问题的广义库仑规双旋度方程的矢量解

Yan Li, Sheng Sun, Q. Dai, W. Chew
{"title":"磁静力问题的广义库仑规双旋度方程的矢量解","authors":"Yan Li, Sheng Sun, Q. Dai, W. Chew","doi":"10.1109/COMPEM.2015.7052658","DOIUrl":null,"url":null,"abstract":"In this paper, a solution to the double curl equation with generalized Coulomb gauge is proposed based on the vectorial representation of the magnetic vector potential. Coulomb gauge is applied to remove the null space of the curl operator and hence the uniqueness of the solution is guaranteed. However, as the divergence operator cannot act on the curl-conforming edge basis functions directly, the magnetic vector potential is used to be represented by nodal finite elements. Inspired by the mapping of Whitney forms by mathematical operators and Hodge operators, the divergence of the magnetic vector potential, as a whole, can be approximated by scalar basis functions. Hence, the magnetic vector potential can be expanded by vector basis functions, and the original equation can be rewritten in a generalized form and solved in a more natural and accurate way.","PeriodicalId":6530,"journal":{"name":"2015 IEEE International Conference on Computational Electromagnetics","volume":"275 1","pages":"350-352"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vectorial solution to double curl equation with generalized coulomb gauge for magneto static problems\",\"authors\":\"Yan Li, Sheng Sun, Q. Dai, W. Chew\",\"doi\":\"10.1109/COMPEM.2015.7052658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a solution to the double curl equation with generalized Coulomb gauge is proposed based on the vectorial representation of the magnetic vector potential. Coulomb gauge is applied to remove the null space of the curl operator and hence the uniqueness of the solution is guaranteed. However, as the divergence operator cannot act on the curl-conforming edge basis functions directly, the magnetic vector potential is used to be represented by nodal finite elements. Inspired by the mapping of Whitney forms by mathematical operators and Hodge operators, the divergence of the magnetic vector potential, as a whole, can be approximated by scalar basis functions. Hence, the magnetic vector potential can be expanded by vector basis functions, and the original equation can be rewritten in a generalized form and solved in a more natural and accurate way.\",\"PeriodicalId\":6530,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Electromagnetics\",\"volume\":\"275 1\",\"pages\":\"350-352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2015.7052658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2015.7052658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于磁矢量势的矢量表示,给出了广义库仑规双旋度方程的一种解。利用库仑规去除旋度算子的零空间,保证了解的唯一性。然而,由于散度算子不能直接作用于符合卷形的边缘基函数,因此采用节点有限元来表示磁矢量势。受数学算符和霍奇算符对惠特尼形式的映射的启发,磁矢量势的散度作为一个整体,可以用标量基函数来近似。因此,磁矢量势可以用矢量基函数展开,将原方程改写为广义形式,求解更加自然、准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vectorial solution to double curl equation with generalized coulomb gauge for magneto static problems
In this paper, a solution to the double curl equation with generalized Coulomb gauge is proposed based on the vectorial representation of the magnetic vector potential. Coulomb gauge is applied to remove the null space of the curl operator and hence the uniqueness of the solution is guaranteed. However, as the divergence operator cannot act on the curl-conforming edge basis functions directly, the magnetic vector potential is used to be represented by nodal finite elements. Inspired by the mapping of Whitney forms by mathematical operators and Hodge operators, the divergence of the magnetic vector potential, as a whole, can be approximated by scalar basis functions. Hence, the magnetic vector potential can be expanded by vector basis functions, and the original equation can be rewritten in a generalized form and solved in a more natural and accurate way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信