AC0公式的临界性

P. Harsha, Tulasimohan Molli, Ashutosh Shankar
{"title":"AC0公式的临界性","authors":"P. Harsha, Tulasimohan Molli, Ashutosh Shankar","doi":"10.48550/arXiv.2212.08397","DOIUrl":null,"url":null,"abstract":"Rossman [In $\\textit{Proc. $34$th Comput. Complexity Conf.}$, 2019] introduced the notion of $\\textit{criticality}$. The criticality of a Boolean function $f : \\{0,1\\}^n \\to \\{0,1\\}$ is the minimum $\\lambda \\geq 1$ such that for all positive integers $t$, \\[ \\Pr_{\\rho \\sim \\mathcal{R}_p}\\left[\\text{DT}_{\\text{depth}}(f|_{\\rho}) \\geq t\\right] \\leq (p\\lambda)^t. \\] H\\\"astad's celebrated switching lemma shows that the criticality of any $k$-DNF is at most $O(k)$. Subsequent improvements to correlation bounds of $\\text{AC}^0$-circuits against parity showed that the criticality of any $\\text{AC}^0$-$\\textit{circuit}$ of size $S$ and depth $d+1$ is at most $O(\\log S)^d$ and any $\\textit{regular}$ $\\text{AC}^0$-$\\textit{formula}$ of size $S$ and depth $d+1$ is at most $O\\left(\\frac1d \\cdot \\log S\\right)^d$. We strengthen these results by showing that the criticality of $\\textit{any}$ $\\text{AC}^0$-formula (not necessarily regular) of size $S$ and depth $d+1$ is at most $O\\left(\\frac1d\\cdot {\\log S}\\right)^d$, resolving a conjecture due to Rossman. This result also implies Rossman's optimal lower bound on the size of any depth-$d$ $\\text{AC}^0$-formula computing parity [$\\textit{Comput. Complexity, 27(2):209--223, 2018.}$]. Our result implies tight correlation bounds against parity, tight Fourier concentration results and improved $\\#$SAT algorithm for $\\text{AC}^0$-formulae.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criticality of AC0 formulae\",\"authors\":\"P. Harsha, Tulasimohan Molli, Ashutosh Shankar\",\"doi\":\"10.48550/arXiv.2212.08397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rossman [In $\\\\textit{Proc. $34$th Comput. Complexity Conf.}$, 2019] introduced the notion of $\\\\textit{criticality}$. The criticality of a Boolean function $f : \\\\{0,1\\\\}^n \\\\to \\\\{0,1\\\\}$ is the minimum $\\\\lambda \\\\geq 1$ such that for all positive integers $t$, \\\\[ \\\\Pr_{\\\\rho \\\\sim \\\\mathcal{R}_p}\\\\left[\\\\text{DT}_{\\\\text{depth}}(f|_{\\\\rho}) \\\\geq t\\\\right] \\\\leq (p\\\\lambda)^t. \\\\] H\\\\\\\"astad's celebrated switching lemma shows that the criticality of any $k$-DNF is at most $O(k)$. Subsequent improvements to correlation bounds of $\\\\text{AC}^0$-circuits against parity showed that the criticality of any $\\\\text{AC}^0$-$\\\\textit{circuit}$ of size $S$ and depth $d+1$ is at most $O(\\\\log S)^d$ and any $\\\\textit{regular}$ $\\\\text{AC}^0$-$\\\\textit{formula}$ of size $S$ and depth $d+1$ is at most $O\\\\left(\\\\frac1d \\\\cdot \\\\log S\\\\right)^d$. We strengthen these results by showing that the criticality of $\\\\textit{any}$ $\\\\text{AC}^0$-formula (not necessarily regular) of size $S$ and depth $d+1$ is at most $O\\\\left(\\\\frac1d\\\\cdot {\\\\log S}\\\\right)^d$, resolving a conjecture due to Rossman. This result also implies Rossman's optimal lower bound on the size of any depth-$d$ $\\\\text{AC}^0$-formula computing parity [$\\\\textit{Comput. Complexity, 27(2):209--223, 2018.}$]. Our result implies tight correlation bounds against parity, tight Fourier concentration results and improved $\\\\#$SAT algorithm for $\\\\text{AC}^0$-formulae.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.08397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.08397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Rossman[在$\textit{Proc. $ 34 $th Comput. Complexity Conf.}$, 2019]介绍了$\textit{criticality}$的概念。一个布尔函数$f : \{0,1\}^n \to \{0,1\}$的临界值是最小的$\lambda \geq 1$,使得对于所有正整数$t$, \[ \Pr_{\rho \sim \mathcal{R}_p}\left[\text{DT}_{\text{depth}}(f|_{\rho}) \geq t\right] \leq (p\lambda)^t. \] Hästad著名的转换引理表明任何$k$ -DNF的临界值最多为$O(k)$。随后对$\text{AC}^0$ -电路的奇偶性相关界的改进表明,$S$和深度$d+1$的任何$\text{AC}^0$ - $\textit{circuit}$的临界值最多为$O(\log S)^d$, $S$和深度$d+1$的任何$\textit{regular}$ - $\text{AC}^0$ - $\textit{formula}$的临界值最多为$O\left(\frac1d \cdot \log S\right)^d$。我们通过表明尺寸$S$和深度$d+1$的$\textit{any}$$\text{AC}^0$公式(不一定是规则的)的临界性最多为$O\left(\frac1d\cdot {\log S}\right)^d$来加强这些结果,解决了由Rossman引起的猜想。这个结果也暗示了Rossman对任何深度大小的最优下界- $d$$\text{AC}^0$ -公式计算奇偶校验[$\textit{Comput. Complexity, 27(2):209--223, 2018.}$]。我们的结果意味着对宇称的紧密相关界限,紧密的傅立叶浓度结果和$\text{AC}^0$ -公式的改进$\#$ SAT算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Criticality of AC0 formulae
Rossman [In $\textit{Proc. $34$th Comput. Complexity Conf.}$, 2019] introduced the notion of $\textit{criticality}$. The criticality of a Boolean function $f : \{0,1\}^n \to \{0,1\}$ is the minimum $\lambda \geq 1$ such that for all positive integers $t$, \[ \Pr_{\rho \sim \mathcal{R}_p}\left[\text{DT}_{\text{depth}}(f|_{\rho}) \geq t\right] \leq (p\lambda)^t. \] H\"astad's celebrated switching lemma shows that the criticality of any $k$-DNF is at most $O(k)$. Subsequent improvements to correlation bounds of $\text{AC}^0$-circuits against parity showed that the criticality of any $\text{AC}^0$-$\textit{circuit}$ of size $S$ and depth $d+1$ is at most $O(\log S)^d$ and any $\textit{regular}$ $\text{AC}^0$-$\textit{formula}$ of size $S$ and depth $d+1$ is at most $O\left(\frac1d \cdot \log S\right)^d$. We strengthen these results by showing that the criticality of $\textit{any}$ $\text{AC}^0$-formula (not necessarily regular) of size $S$ and depth $d+1$ is at most $O\left(\frac1d\cdot {\log S}\right)^d$, resolving a conjecture due to Rossman. This result also implies Rossman's optimal lower bound on the size of any depth-$d$ $\text{AC}^0$-formula computing parity [$\textit{Comput. Complexity, 27(2):209--223, 2018.}$]. Our result implies tight correlation bounds against parity, tight Fourier concentration results and improved $\#$SAT algorithm for $\text{AC}^0$-formulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信