关于特殊单关系逆模群的单关系群和单位

Carl-Fredrik Nyberg Brodda
{"title":"关于特殊单关系逆模群的单关系群和单位","authors":"Carl-Fredrik Nyberg Brodda","doi":"10.1142/s0218196722500618","DOIUrl":null,"url":null,"abstract":"This note investigates and clarifies some connections between the theory of one-relator groups and special one-relation inverse monoids, i.e. those inverse monoids with a presentation of the form $\\operatorname{Inv}\\langle A \\mid w=1 \\rangle$. We show that every one-relator group admits a special one-relation inverse monoid presentation. We subsequently consider the classes ${\\rm {\\small ANY}}, {\\rm {\\small RED}}, {\\rm {\\small CRED}},$ and ${\\rm {\\small POS}}$ of one-relator groups which can be defined by special one-relation inverse monoid presentations in which the defining word is arbitrary; reduced; cyclically reduced; or positive, respectively. We show that the inclusions ${\\rm {\\small ANY}} \\supset {\\rm {\\small CRED}} \\supset {\\rm {\\small POS}}$ are all strict. Conditional on a natural conjecture, we prove ${\\rm {\\small ANY}} \\supset {\\rm {\\small RED}}$. Following this, we use the Benois algorithm recently devised by Gray&Ruskuc to produce an infinite family of special one-relation inverse monoids which exhibit similar pathological behaviour (which we term O'Haresque) to the O'Hare monoid with respect to computing the minimal invertible pieces of the defining word. Finally, we provide a counterexample to a conjecture by Gray&Ruskuc that the Benois algorithm always correctly computes the minimal invertible pieces of a special one-relation inverse monoid.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"57 1","pages":"1379-1401"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On one-relator groups and units of special one-relation inverse monoids\",\"authors\":\"Carl-Fredrik Nyberg Brodda\",\"doi\":\"10.1142/s0218196722500618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note investigates and clarifies some connections between the theory of one-relator groups and special one-relation inverse monoids, i.e. those inverse monoids with a presentation of the form $\\\\operatorname{Inv}\\\\langle A \\\\mid w=1 \\\\rangle$. We show that every one-relator group admits a special one-relation inverse monoid presentation. We subsequently consider the classes ${\\\\rm {\\\\small ANY}}, {\\\\rm {\\\\small RED}}, {\\\\rm {\\\\small CRED}},$ and ${\\\\rm {\\\\small POS}}$ of one-relator groups which can be defined by special one-relation inverse monoid presentations in which the defining word is arbitrary; reduced; cyclically reduced; or positive, respectively. We show that the inclusions ${\\\\rm {\\\\small ANY}} \\\\supset {\\\\rm {\\\\small CRED}} \\\\supset {\\\\rm {\\\\small POS}}$ are all strict. Conditional on a natural conjecture, we prove ${\\\\rm {\\\\small ANY}} \\\\supset {\\\\rm {\\\\small RED}}$. Following this, we use the Benois algorithm recently devised by Gray&Ruskuc to produce an infinite family of special one-relation inverse monoids which exhibit similar pathological behaviour (which we term O'Haresque) to the O'Hare monoid with respect to computing the minimal invertible pieces of the defining word. Finally, we provide a counterexample to a conjecture by Gray&Ruskuc that the Benois algorithm always correctly computes the minimal invertible pieces of a special one-relation inverse monoid.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"57 1\",\"pages\":\"1379-1401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究并阐明了单关系群理论与特殊的单关系逆模群,即具有$\operatorname{Inv}\langle a \mid w=1 \rangle$表示形式的逆模群之间的一些联系。我们证明了每一个单关系群都有一个特殊的单关系逆单群表示。我们随后考虑单相关群的${\rm {\small ANY}}、{\rm {\small RED}}、{\rm {\small CRED}}、$和${\rm {\small POS}}$类,它们可以由定义词为任意的特殊单相关逆单群表示来定义;减少;周期性减少;或者是正的。我们证明了包含项${\rm {\small ANY}} \supset {\rm {\small CRED}} \supset {\rm {\small POS}}$都是严格的。在一个自然猜想的条件下,我们证明了${\rm {\small ANY}} \supset {\rm {\small RED}}$。在此之后,我们使用最近由Gray&Ruskuc设计的Benois算法来产生一个无限族的特殊单关系逆模群,它们在计算定义词的最小可逆块方面表现出与O'Hare模群相似的病态行为(我们称之为O'Haresque)。最后,我们给出了一个反例,证明了Gray&Ruskuc的一个猜想,即Benois算法总是正确地计算一个特殊的单关系逆单群的最小可逆块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On one-relator groups and units of special one-relation inverse monoids
This note investigates and clarifies some connections between the theory of one-relator groups and special one-relation inverse monoids, i.e. those inverse monoids with a presentation of the form $\operatorname{Inv}\langle A \mid w=1 \rangle$. We show that every one-relator group admits a special one-relation inverse monoid presentation. We subsequently consider the classes ${\rm {\small ANY}}, {\rm {\small RED}}, {\rm {\small CRED}},$ and ${\rm {\small POS}}$ of one-relator groups which can be defined by special one-relation inverse monoid presentations in which the defining word is arbitrary; reduced; cyclically reduced; or positive, respectively. We show that the inclusions ${\rm {\small ANY}} \supset {\rm {\small CRED}} \supset {\rm {\small POS}}$ are all strict. Conditional on a natural conjecture, we prove ${\rm {\small ANY}} \supset {\rm {\small RED}}$. Following this, we use the Benois algorithm recently devised by Gray&Ruskuc to produce an infinite family of special one-relation inverse monoids which exhibit similar pathological behaviour (which we term O'Haresque) to the O'Hare monoid with respect to computing the minimal invertible pieces of the defining word. Finally, we provide a counterexample to a conjecture by Gray&Ruskuc that the Benois algorithm always correctly computes the minimal invertible pieces of a special one-relation inverse monoid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信