{"title":"基于无线物联网结构健康监测系统的桥梁振动能量收集研究进展","authors":"M. Ahmad, Nadia Masood Khan, F. Khan","doi":"10.1177/1045389X231180040","DOIUrl":null,"url":null,"abstract":"Vibration energy has the advantage of abundant availability in the environment of the bridge structure due to consistent traffic flow and high-speed wind blowing. The vibration energy present at the bridge site can be harvested for powering the wireless sensors mounted on the bridge for health monitoring and making the system self-powered. The bridge vibrations are usually low frequency and low acceleration excitations, therefore, its transduction to useful electrical energy is a challenge. However, several techniques are being utilized to harvest the bridge vibration and a variety of bridge energy harvesters are being developed for this purpose. This work has reviewed energy harvesters claimed to be designed for bridge vibrations. The study is split into two categories, first section discusses the energy harvesters developed for bridge vibrations tested only in-lab environments. The second section is about the harvesters that have been characterized on real bridge structures to verify their effectiveness. The study reveals that the bridge energy harvesters can extract enough power to operate the wireless sensors for the health monitoring of bridge structures. Moreover, the architecture, fabrication, input excitation, and output performance of the reported harvesters with modeling techniques are discussed.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"40 1","pages":"2209 - 2239"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridge vibration energy harvesting for wireless IoT-based structural health monitoring systems: A review\",\"authors\":\"M. Ahmad, Nadia Masood Khan, F. Khan\",\"doi\":\"10.1177/1045389X231180040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration energy has the advantage of abundant availability in the environment of the bridge structure due to consistent traffic flow and high-speed wind blowing. The vibration energy present at the bridge site can be harvested for powering the wireless sensors mounted on the bridge for health monitoring and making the system self-powered. The bridge vibrations are usually low frequency and low acceleration excitations, therefore, its transduction to useful electrical energy is a challenge. However, several techniques are being utilized to harvest the bridge vibration and a variety of bridge energy harvesters are being developed for this purpose. This work has reviewed energy harvesters claimed to be designed for bridge vibrations. The study is split into two categories, first section discusses the energy harvesters developed for bridge vibrations tested only in-lab environments. The second section is about the harvesters that have been characterized on real bridge structures to verify their effectiveness. The study reveals that the bridge energy harvesters can extract enough power to operate the wireless sensors for the health monitoring of bridge structures. Moreover, the architecture, fabrication, input excitation, and output performance of the reported harvesters with modeling techniques are discussed.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"40 1\",\"pages\":\"2209 - 2239\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X231180040\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X231180040","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridge vibration energy harvesting for wireless IoT-based structural health monitoring systems: A review
Vibration energy has the advantage of abundant availability in the environment of the bridge structure due to consistent traffic flow and high-speed wind blowing. The vibration energy present at the bridge site can be harvested for powering the wireless sensors mounted on the bridge for health monitoring and making the system self-powered. The bridge vibrations are usually low frequency and low acceleration excitations, therefore, its transduction to useful electrical energy is a challenge. However, several techniques are being utilized to harvest the bridge vibration and a variety of bridge energy harvesters are being developed for this purpose. This work has reviewed energy harvesters claimed to be designed for bridge vibrations. The study is split into two categories, first section discusses the energy harvesters developed for bridge vibrations tested only in-lab environments. The second section is about the harvesters that have been characterized on real bridge structures to verify their effectiveness. The study reveals that the bridge energy harvesters can extract enough power to operate the wireless sensors for the health monitoring of bridge structures. Moreover, the architecture, fabrication, input excitation, and output performance of the reported harvesters with modeling techniques are discussed.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.