{"title":"如何飞到安全的地方而不多付机票钱","authors":"Tomasz Kaczmarek, Przemysław Grobelny","doi":"10.18559/ebr.2023.2.738","DOIUrl":null,"url":null,"abstract":"Abstract For most active investors treasury bonds (govs) provide diversification and thus reduce the risk of a portfolio. These features of govs become particularly desirable in times of elevated risk which materialize in the form of the flight-to-safety (FTS) phenomenon. The FTS for govs provides a shelter during market turbulence and is exceptionally beneficial for portfolio drawdown risk reduction. However, what if the unsatisfactory expected return from treasuries discourages higher bonds allocations? This research proposes a solution to this problem with Deep Target Volatility Equity-Bond Allocation (DTVEBA) that dynamically allocate portfolios between equity and treasuries. The strategy is driven by a state-of-the-art recurrent neural network (RNN) that predicts next-day market volatility. An analysis conducted over a twelve year out-of-sample period found that with DTVEBA an investor may reduce treasury allocation by two (three) times to get the same Sharpe (Calmar) ratio and overper-forms the S&P500 index by 43% (115%).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to fly to safety without overpaying for the ticket\",\"authors\":\"Tomasz Kaczmarek, Przemysław Grobelny\",\"doi\":\"10.18559/ebr.2023.2.738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For most active investors treasury bonds (govs) provide diversification and thus reduce the risk of a portfolio. These features of govs become particularly desirable in times of elevated risk which materialize in the form of the flight-to-safety (FTS) phenomenon. The FTS for govs provides a shelter during market turbulence and is exceptionally beneficial for portfolio drawdown risk reduction. However, what if the unsatisfactory expected return from treasuries discourages higher bonds allocations? This research proposes a solution to this problem with Deep Target Volatility Equity-Bond Allocation (DTVEBA) that dynamically allocate portfolios between equity and treasuries. The strategy is driven by a state-of-the-art recurrent neural network (RNN) that predicts next-day market volatility. An analysis conducted over a twelve year out-of-sample period found that with DTVEBA an investor may reduce treasury allocation by two (three) times to get the same Sharpe (Calmar) ratio and overper-forms the S&P500 index by 43% (115%).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18559/ebr.2023.2.738\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18559/ebr.2023.2.738","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
对于大多数积极的投资者来说,国库券提供了分散投资,从而降低了投资组合的风险。在风险升高的时候,政府的这些特征变得特别可取,这种风险以“逃向安全”(FTS)现象的形式出现。为政府提供的FTS在市场动荡期间提供了一个避难所,对减少投资组合的风险特别有益。然而,如果美国国债的预期回报不令人满意,导致投资者不愿增持债券,那该怎么办?本文提出了一种深度目标波动率股票-债券配置(Deep Target Volatility equity - bond Allocation, DTVEBA)方法来解决这一问题。该策略由最先进的循环神经网络(RNN)驱动,该网络可以预测第二天的市场波动。一项为期12年的样本外分析发现,使用DTVEBA,投资者可能会将国债配置减少两(三)倍,以获得相同的夏普(卡尔马)比率,并比标准普尔500指数高出43%(115%)。
How to fly to safety without overpaying for the ticket
Abstract For most active investors treasury bonds (govs) provide diversification and thus reduce the risk of a portfolio. These features of govs become particularly desirable in times of elevated risk which materialize in the form of the flight-to-safety (FTS) phenomenon. The FTS for govs provides a shelter during market turbulence and is exceptionally beneficial for portfolio drawdown risk reduction. However, what if the unsatisfactory expected return from treasuries discourages higher bonds allocations? This research proposes a solution to this problem with Deep Target Volatility Equity-Bond Allocation (DTVEBA) that dynamically allocate portfolios between equity and treasuries. The strategy is driven by a state-of-the-art recurrent neural network (RNN) that predicts next-day market volatility. An analysis conducted over a twelve year out-of-sample period found that with DTVEBA an investor may reduce treasury allocation by two (three) times to get the same Sharpe (Calmar) ratio and overper-forms the S&P500 index by 43% (115%).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.