{"title":"已知静态环境下自主机器人多目标混合无碰撞最优寻径器","authors":"Kadari Neeraja, G. Narsimha","doi":"10.12694/scpe.v23i4.2049","DOIUrl":null,"url":null,"abstract":"The most important field of robotics study is path planning. Path planning problem in general is an NP-complete problem. Though several attempts have been made using A*, PRM, RRT, and RRT* these algorithms explore too many nodes in the state space, not completely captured kinematic constraints, and are not optimal in real-time. In this paper, a Multi-Objective Hybrid Collision- free Optimal Path Finder (MOHC-OPF) is proposed which is an attempt to obtain a near-optimal solution by exploring fewer nodes compare to the above existing methods while considering kinematic constraints aiming to generate optimal drivable paths. The empirical study revealed that the proposed algorithm is capable of detecting static obstacles and finding a collision-free nearest-optimal, smooth and safe path to the destination in a static known environment. Multiple criteria, including path length, collision-free, execution time, and smooth path, are used to determine an optimal path.. The proposed algorithm shows efficiency in finding the shortest path length and execution time decreased in 90% of the experiments.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Multi Objective Hybrid Collision-free Optimal Path Finder for Autonomous Robots in Known Static Environments\",\"authors\":\"Kadari Neeraja, G. Narsimha\",\"doi\":\"10.12694/scpe.v23i4.2049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most important field of robotics study is path planning. Path planning problem in general is an NP-complete problem. Though several attempts have been made using A*, PRM, RRT, and RRT* these algorithms explore too many nodes in the state space, not completely captured kinematic constraints, and are not optimal in real-time. In this paper, a Multi-Objective Hybrid Collision- free Optimal Path Finder (MOHC-OPF) is proposed which is an attempt to obtain a near-optimal solution by exploring fewer nodes compare to the above existing methods while considering kinematic constraints aiming to generate optimal drivable paths. The empirical study revealed that the proposed algorithm is capable of detecting static obstacles and finding a collision-free nearest-optimal, smooth and safe path to the destination in a static known environment. Multiple criteria, including path length, collision-free, execution time, and smooth path, are used to determine an optimal path.. The proposed algorithm shows efficiency in finding the shortest path length and execution time decreased in 90% of the experiments.\",\"PeriodicalId\":43791,\"journal\":{\"name\":\"Scalable Computing-Practice and Experience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Computing-Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12694/scpe.v23i4.2049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v23i4.2049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Multi Objective Hybrid Collision-free Optimal Path Finder for Autonomous Robots in Known Static Environments
The most important field of robotics study is path planning. Path planning problem in general is an NP-complete problem. Though several attempts have been made using A*, PRM, RRT, and RRT* these algorithms explore too many nodes in the state space, not completely captured kinematic constraints, and are not optimal in real-time. In this paper, a Multi-Objective Hybrid Collision- free Optimal Path Finder (MOHC-OPF) is proposed which is an attempt to obtain a near-optimal solution by exploring fewer nodes compare to the above existing methods while considering kinematic constraints aiming to generate optimal drivable paths. The empirical study revealed that the proposed algorithm is capable of detecting static obstacles and finding a collision-free nearest-optimal, smooth and safe path to the destination in a static known environment. Multiple criteria, including path length, collision-free, execution time, and smooth path, are used to determine an optimal path.. The proposed algorithm shows efficiency in finding the shortest path length and execution time decreased in 90% of the experiments.
期刊介绍:
The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.