热疗过程中组织传热非线性双相滞后模型的数值解

IF 0.9 Q3 MATHEMATICS, APPLIED
Neha Sharma, Surjan Singh, Dinesh Kumar
{"title":"热疗过程中组织传热非线性双相滞后模型的数值解","authors":"Neha Sharma,&nbsp;Surjan Singh,&nbsp;Dinesh Kumar","doi":"10.1002/cmm4.1183","DOIUrl":null,"url":null,"abstract":"<p>This article deals with mathematical modeling and simulation of heat transfer in tissue under periodic boundary condition using nonlinear dual-phase-lag-bioheat-transfer (DPLBHT). We have taken the temperature dependent blood perfusion and metabolic heat source as exponent variation in nonlinear DPLBHT model, both are experimentally validated function of temperature. In this article we applied finite difference method and Runge–Kutta (4,5) scheme to solve nonlinear problem. In particular case the exact solution is obtained and compared with numerical scheme and both are in good agreement. Effect of different parameters are discussed in detail such as blood perfusion rate, dimensionless heat source parameters, relaxation, and thermalization time on dimensionless temperature. The whole article is analyzed in dimensionless form.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1183","citationCount":"2","resultStr":"{\"title\":\"Numerical solution of nonlinear dual-phase-lag model for analyzing heat transfer in tissue during thermal therapy\",\"authors\":\"Neha Sharma,&nbsp;Surjan Singh,&nbsp;Dinesh Kumar\",\"doi\":\"10.1002/cmm4.1183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article deals with mathematical modeling and simulation of heat transfer in tissue under periodic boundary condition using nonlinear dual-phase-lag-bioheat-transfer (DPLBHT). We have taken the temperature dependent blood perfusion and metabolic heat source as exponent variation in nonlinear DPLBHT model, both are experimentally validated function of temperature. In this article we applied finite difference method and Runge–Kutta (4,5) scheme to solve nonlinear problem. In particular case the exact solution is obtained and compared with numerical scheme and both are in good agreement. Effect of different parameters are discussed in detail such as blood perfusion rate, dimensionless heat source parameters, relaxation, and thermalization time on dimensionless temperature. The whole article is analyzed in dimensionless form.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1183\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文利用非线性双相滞后生物传热(DPLBHT)对周期性边界条件下的组织传热进行了数学建模和模拟。我们将温度依赖性血液灌注和代谢热源作为非线性DPLBHT模型的指数变化,两者都是实验验证的温度函数。本文应用有限差分法和龙格-库塔(4,5)格式求解非线性问题。在特殊情况下,得到了精确解,并与数值格式进行了比较,两者吻合较好。详细讨论了血流灌注率、无量纲热源参数、弛豫和热化时间等参数对无量纲温度的影响。全文以无量纲形式进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of nonlinear dual-phase-lag model for analyzing heat transfer in tissue during thermal therapy

This article deals with mathematical modeling and simulation of heat transfer in tissue under periodic boundary condition using nonlinear dual-phase-lag-bioheat-transfer (DPLBHT). We have taken the temperature dependent blood perfusion and metabolic heat source as exponent variation in nonlinear DPLBHT model, both are experimentally validated function of temperature. In this article we applied finite difference method and Runge–Kutta (4,5) scheme to solve nonlinear problem. In particular case the exact solution is obtained and compared with numerical scheme and both are in good agreement. Effect of different parameters are discussed in detail such as blood perfusion rate, dimensionless heat source parameters, relaxation, and thermalization time on dimensionless temperature. The whole article is analyzed in dimensionless form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信