{"title":"复合高能处理下铁基合金的相与组织转变","authors":"V. Danilchenko, Ye. M. Dzevin, O. Semyrga","doi":"10.15407/ufm.23.02.296","DOIUrl":null,"url":null,"abstract":"Applying the x-ray, metallographic, and microdurometric methods, the phase composition and structural–stress state of the Fe-based alloys under the impact of electrospark treatment in combination with laser processing are studied and analysed. As shown, the structural–phase state of electrospark coating on the steel substrate is determined by several factors. They are the dissociation of WC carbide on the surface of alloying electrode on the W2C and W components followed by their erosion, an interaction of erosion products with elements of the interelectrode medium (C, N, O), an interdiffusion of the coating elements and a steel substrate, and the ascending diffusion of C from the substrate near-surface layers. As revealed, the heterophase coating and near-surface layers of substrate possess a complex structural–stress state. As shown, the residual stresses in different phase components have been formed through different regularities: the tensile stresses in the TiC-based compound, while the compressed stresses in the W2C, W, and Feα. The selective effect of laser heating of the coating on the stresses of different signs is revealed.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":"83 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase and Structural Transformations in the Fe-Based Alloys under the Combined High-Energy Treatment\",\"authors\":\"V. Danilchenko, Ye. M. Dzevin, O. Semyrga\",\"doi\":\"10.15407/ufm.23.02.296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying the x-ray, metallographic, and microdurometric methods, the phase composition and structural–stress state of the Fe-based alloys under the impact of electrospark treatment in combination with laser processing are studied and analysed. As shown, the structural–phase state of electrospark coating on the steel substrate is determined by several factors. They are the dissociation of WC carbide on the surface of alloying electrode on the W2C and W components followed by their erosion, an interaction of erosion products with elements of the interelectrode medium (C, N, O), an interdiffusion of the coating elements and a steel substrate, and the ascending diffusion of C from the substrate near-surface layers. As revealed, the heterophase coating and near-surface layers of substrate possess a complex structural–stress state. As shown, the residual stresses in different phase components have been formed through different regularities: the tensile stresses in the TiC-based compound, while the compressed stresses in the W2C, W, and Feα. The selective effect of laser heating of the coating on the stresses of different signs is revealed.\",\"PeriodicalId\":41786,\"journal\":{\"name\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ufm.23.02.296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.23.02.296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Phase and Structural Transformations in the Fe-Based Alloys under the Combined High-Energy Treatment
Applying the x-ray, metallographic, and microdurometric methods, the phase composition and structural–stress state of the Fe-based alloys under the impact of electrospark treatment in combination with laser processing are studied and analysed. As shown, the structural–phase state of electrospark coating on the steel substrate is determined by several factors. They are the dissociation of WC carbide on the surface of alloying electrode on the W2C and W components followed by their erosion, an interaction of erosion products with elements of the interelectrode medium (C, N, O), an interdiffusion of the coating elements and a steel substrate, and the ascending diffusion of C from the substrate near-surface layers. As revealed, the heterophase coating and near-surface layers of substrate possess a complex structural–stress state. As shown, the residual stresses in different phase components have been formed through different regularities: the tensile stresses in the TiC-based compound, while the compressed stresses in the W2C, W, and Feα. The selective effect of laser heating of the coating on the stresses of different signs is revealed.
期刊介绍:
The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.