注意残留UNet:局部Tversky损失的注意残留UNet用于皮肤病变分割

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Aasia Rehman, M. A. Butt, Majid Zaman
{"title":"注意残留UNet:局部Tversky损失的注意残留UNet用于皮肤病变分割","authors":"Aasia Rehman, M. A. Butt, Majid Zaman","doi":"10.4018/ijdsst.315756","DOIUrl":null,"url":null,"abstract":"During a dermoscopy examination, accurate and automatic skin lesion detection and segmentation can assist medical experts in resecting problematic areas and decrease the risk of deaths due to skin cancer. In order to develop fully automated deep learning model for skin lesion segmentation, the authors design a model Attention Res-UNet by incorporating residual connections, squeeze and excite units, atrous spatial pyramid pooling, and attention gates in basic UNet architecture. This model uses focal tversky loss function to achieve better trade off among recall and precision when training on smaller size lesions while improving the overall outcome of the proposed model. The results of experiments have demonstrated that this design, when evaluated on publicly available ISIC 2018 skin lesion segmentation dataset, outperforms the existing standard methods with a Dice score of 89.14% and IoU of 81.16%; and achieves better trade off among precision and recall. The authors have also performed statistical test of this model with other standard methods and evaluated that this model is statistically significant.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"296 1","pages":"1-17"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attention Res-UNet: Attention Residual UNet With Focal Tversky Loss for Skin Lesion Segmentation\",\"authors\":\"Aasia Rehman, M. A. Butt, Majid Zaman\",\"doi\":\"10.4018/ijdsst.315756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During a dermoscopy examination, accurate and automatic skin lesion detection and segmentation can assist medical experts in resecting problematic areas and decrease the risk of deaths due to skin cancer. In order to develop fully automated deep learning model for skin lesion segmentation, the authors design a model Attention Res-UNet by incorporating residual connections, squeeze and excite units, atrous spatial pyramid pooling, and attention gates in basic UNet architecture. This model uses focal tversky loss function to achieve better trade off among recall and precision when training on smaller size lesions while improving the overall outcome of the proposed model. The results of experiments have demonstrated that this design, when evaluated on publicly available ISIC 2018 skin lesion segmentation dataset, outperforms the existing standard methods with a Dice score of 89.14% and IoU of 81.16%; and achieves better trade off among precision and recall. The authors have also performed statistical test of this model with other standard methods and evaluated that this model is statistically significant.\",\"PeriodicalId\":42414,\"journal\":{\"name\":\"International Journal of Decision Support System Technology\",\"volume\":\"296 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Decision Support System Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdsst.315756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.315756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在皮肤镜检查中,准确和自动的皮肤病变检测和分割可以帮助医学专家切除有问题的区域,降低因皮肤癌死亡的风险。为了开发用于皮肤损伤分割的全自动深度学习模型,作者在基本UNet架构中结合残差连接、挤压和激发单元、空间金字塔池和注意门,设计了一个注意力re -UNet模型。该模型使用局灶tversky损失函数,在对较小尺寸病变进行训练时,在召回率和精度之间实现了更好的权衡,同时提高了所提出模型的总体结果。实验结果表明,该设计在公开的ISIC 2018皮肤病变分割数据集上进行评估时,其Dice得分为89.14%,IoU为81.16%,优于现有的标准方法;在精确度和召回率之间取得了更好的平衡。作者还用其他标准方法对该模型进行了统计检验,并评价该模型具有统计学显著性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention Res-UNet: Attention Residual UNet With Focal Tversky Loss for Skin Lesion Segmentation
During a dermoscopy examination, accurate and automatic skin lesion detection and segmentation can assist medical experts in resecting problematic areas and decrease the risk of deaths due to skin cancer. In order to develop fully automated deep learning model for skin lesion segmentation, the authors design a model Attention Res-UNet by incorporating residual connections, squeeze and excite units, atrous spatial pyramid pooling, and attention gates in basic UNet architecture. This model uses focal tversky loss function to achieve better trade off among recall and precision when training on smaller size lesions while improving the overall outcome of the proposed model. The results of experiments have demonstrated that this design, when evaluated on publicly available ISIC 2018 skin lesion segmentation dataset, outperforms the existing standard methods with a Dice score of 89.14% and IoU of 81.16%; and achieves better trade off among precision and recall. The authors have also performed statistical test of this model with other standard methods and evaluated that this model is statistically significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信