{"title":"BCI代数若干推广的p-半单性质及其应用","authors":"L. Obojska, A. Walendziak","doi":"10.2478/aupcsm-2020-0007","DOIUrl":null,"url":null,"abstract":"This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"23 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The p-semisimple property for some generalizations of BCI algebras and its applications\",\"authors\":\"L. Obojska, A. Walendziak\",\"doi\":\"10.2478/aupcsm-2020-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aupcsm-2020-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The p-semisimple property for some generalizations of BCI algebras and its applications
This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.