一类随机Navier-Stokes方程弱解的构造

Pub Date : 2014-07-04 DOI:10.1080/17442508.2013.848864
Satoshi Yokoyama
{"title":"一类随机Navier-Stokes方程弱解的构造","authors":"Satoshi Yokoyama","doi":"10.1080/17442508.2013.848864","DOIUrl":null,"url":null,"abstract":"We prove the existence of weak solutions of stochastic Navier–Stokes equation on a two-dimensional torus, which appears in a certain variational problem. Our equation does not satisfy the coercivity condition. We construct its weak solutions due to an approximation by a sequence of solutions of equations with enlarged viscosity terms and then by showing an a priori estimate for them.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Construction of weak solutions of a certain stochastic Navier–Stokes equation\",\"authors\":\"Satoshi Yokoyama\",\"doi\":\"10.1080/17442508.2013.848864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of weak solutions of stochastic Navier–Stokes equation on a two-dimensional torus, which appears in a certain variational problem. Our equation does not satisfy the coercivity condition. We construct its weak solutions due to an approximation by a sequence of solutions of equations with enlarged viscosity terms and then by showing an a priori estimate for them.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2013.848864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.848864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

证明了某变分问题中二维环面上随机Navier-Stokes方程弱解的存在性。我们的方程不满足矫顽力条件。我们构造了它的弱解,由于一个近似的一系列解与扩大粘度项,然后通过显示一个先验估计它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Construction of weak solutions of a certain stochastic Navier–Stokes equation
We prove the existence of weak solutions of stochastic Navier–Stokes equation on a two-dimensional torus, which appears in a certain variational problem. Our equation does not satisfy the coercivity condition. We construct its weak solutions due to an approximation by a sequence of solutions of equations with enlarged viscosity terms and then by showing an a priori estimate for them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信