交叉后接触硅异质结太阳能电池低温前表面钝化的几种方法

B. Shu, U. Das, J. Appel, B. McCandless, S. Hegedus, R. Birkmire
{"title":"交叉后接触硅异质结太阳能电池低温前表面钝化的几种方法","authors":"B. Shu, U. Das, J. Appel, B. McCandless, S. Hegedus, R. Birkmire","doi":"10.1109/PVSC.2010.5616755","DOIUrl":null,"url":null,"abstract":"In this work, we investigated two alternative approaches for the front surface passivation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells: (1) with plasma enhanced chemical vapor deposited (PEVCD) a-Si-based stack structure consisting of a-Si:H/a-SiNx:H/a-SiC:H, and (2) with physical vapor deposited (PVD) zinc sulfide (ZnS) film. The processing temperatures for both the approaches are under 300°C. Effective surface recombination velocities (SRV) of < 6.2cm/s and < 35cm/s are obtained with stack structure and ZnS respectively on n-type float zone (FZ) crystalline silicon (c-Si) wafers. The anti-reflection (AR) properties of these two passivation approaches are studied and the optimization procedure of the stack structure was discussed and shown to improve the photo-generated current. The IBC-SHJ solar cells were fabricated using both the front surface passivation approaches and a 15% cell efficiency was achieved on 150µm thick FZ c-Si wafer without surface texturing and optical optimization.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"47 1","pages":"003223-003228"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Alternative approaches for low temperature front surface passivation of interdigitated back contact silicon heterojunction solar cell\",\"authors\":\"B. Shu, U. Das, J. Appel, B. McCandless, S. Hegedus, R. Birkmire\",\"doi\":\"10.1109/PVSC.2010.5616755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigated two alternative approaches for the front surface passivation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells: (1) with plasma enhanced chemical vapor deposited (PEVCD) a-Si-based stack structure consisting of a-Si:H/a-SiNx:H/a-SiC:H, and (2) with physical vapor deposited (PVD) zinc sulfide (ZnS) film. The processing temperatures for both the approaches are under 300°C. Effective surface recombination velocities (SRV) of < 6.2cm/s and < 35cm/s are obtained with stack structure and ZnS respectively on n-type float zone (FZ) crystalline silicon (c-Si) wafers. The anti-reflection (AR) properties of these two passivation approaches are studied and the optimization procedure of the stack structure was discussed and shown to improve the photo-generated current. The IBC-SHJ solar cells were fabricated using both the front surface passivation approaches and a 15% cell efficiency was achieved on 150µm thick FZ c-Si wafer without surface texturing and optical optimization.\",\"PeriodicalId\":6424,\"journal\":{\"name\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"volume\":\"47 1\",\"pages\":\"003223-003228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2010.5616755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5616755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在这项工作中,我们研究了两种可选的交叉背接触硅异质结(IBC-SHJ)太阳能电池前表面钝化的方法:(1)等离子体增强化学气相沉积(PEVCD)由a-Si:H/a-SiNx:H/a-SiC:H组成的a-Si基堆栈结构,以及(2)物理气相沉积(PVD)硫化锌(ZnS)薄膜。这两种方法的加工温度都在300℃以下。在n型浮子区(FZ)晶体硅(c-Si)晶圆上,采用堆叠结构和ZnS分别获得了< 6.2cm/s和< 35cm/s的有效表面复合速度(SRV)。研究了这两种钝化方法的增透性能,并讨论了优化堆栈结构的方法,以提高光产生电流。采用前表面钝化方法制备了IBC-SHJ太阳能电池,在150µm厚的FZ c-Si晶片上,无需表面纹理和光学优化,电池效率达到15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative approaches for low temperature front surface passivation of interdigitated back contact silicon heterojunction solar cell
In this work, we investigated two alternative approaches for the front surface passivation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells: (1) with plasma enhanced chemical vapor deposited (PEVCD) a-Si-based stack structure consisting of a-Si:H/a-SiNx:H/a-SiC:H, and (2) with physical vapor deposited (PVD) zinc sulfide (ZnS) film. The processing temperatures for both the approaches are under 300°C. Effective surface recombination velocities (SRV) of < 6.2cm/s and < 35cm/s are obtained with stack structure and ZnS respectively on n-type float zone (FZ) crystalline silicon (c-Si) wafers. The anti-reflection (AR) properties of these two passivation approaches are studied and the optimization procedure of the stack structure was discussed and shown to improve the photo-generated current. The IBC-SHJ solar cells were fabricated using both the front surface passivation approaches and a 15% cell efficiency was achieved on 150µm thick FZ c-Si wafer without surface texturing and optical optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信