基于机器学习的东苏里格油田水力压裂井生产动态评价

Xianlin Ma, De-sheng Zhou, Wenbing Cai
{"title":"基于机器学习的东苏里格油田水力压裂井生产动态评价","authors":"Xianlin Ma, De-sheng Zhou, Wenbing Cai","doi":"10.12783/DTEEES/PEEES2020/35499","DOIUrl":null,"url":null,"abstract":"The paper presents a comprehensive workflow to integrate the machine learning algorithm with the Monte Carlo simulation, and a field example is provided to demonstrate that the proposed workflow could reasonably capture the behaviour of well production data. The workflow helps engineers in learning valuable lessons from their historical operations to optimize the future hydraulic fracturing treatments in the Sulige gas field.","PeriodicalId":11369,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Science","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Production Performance Evaluation of Hydraulically Fractured Wells in the East Sulige Field Using Machine Learning\",\"authors\":\"Xianlin Ma, De-sheng Zhou, Wenbing Cai\",\"doi\":\"10.12783/DTEEES/PEEES2020/35499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a comprehensive workflow to integrate the machine learning algorithm with the Monte Carlo simulation, and a field example is provided to demonstrate that the proposed workflow could reasonably capture the behaviour of well production data. The workflow helps engineers in learning valuable lessons from their historical operations to optimize the future hydraulic fracturing treatments in the Sulige gas field.\",\"PeriodicalId\":11369,\"journal\":{\"name\":\"DEStech Transactions on Environment, Energy and Earth Science\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Environment, Energy and Earth Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/DTEEES/PEEES2020/35499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/DTEEES/PEEES2020/35499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个综合的工作流程,将机器学习算法与蒙特卡罗模拟相结合,并提供了一个现场实例来证明所提出的工作流程可以合理地捕获油井生产数据的行为。该工作流程可以帮助工程师从以往的作业中吸取宝贵的经验教训,以优化苏里格气田未来的水力压裂处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Production Performance Evaluation of Hydraulically Fractured Wells in the East Sulige Field Using Machine Learning
The paper presents a comprehensive workflow to integrate the machine learning algorithm with the Monte Carlo simulation, and a field example is provided to demonstrate that the proposed workflow could reasonably capture the behaviour of well production data. The workflow helps engineers in learning valuable lessons from their historical operations to optimize the future hydraulic fracturing treatments in the Sulige gas field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信