{"title":"关于广义的(p, q)-特殊多项式","authors":"U. Duran, M. Acikgoz, S. Araci","doi":"10.3844/JMSSP.2018.129.140","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a new class of generalized (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and investigate their some properties. We derive (p, q)-generalizations of some familiar formulae belonging to classical Bernoulli, Euler and Genocchi polynomials. We also obtain a (p, q)-extension of the Srivastava-Pinter addition theorem.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"11 1","pages":"129-140"},"PeriodicalIF":0.3000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Generalized Some (p, q)-Special Polynomials\",\"authors\":\"U. Duran, M. Acikgoz, S. Araci\",\"doi\":\"10.3844/JMSSP.2018.129.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a new class of generalized (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and investigate their some properties. We derive (p, q)-generalizations of some familiar formulae belonging to classical Bernoulli, Euler and Genocchi polynomials. We also obtain a (p, q)-extension of the Srivastava-Pinter addition theorem.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"11 1\",\"pages\":\"129-140\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2018.129.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.129.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this study, we introduce a new class of generalized (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and investigate their some properties. We derive (p, q)-generalizations of some familiar formulae belonging to classical Bernoulli, Euler and Genocchi polynomials. We also obtain a (p, q)-extension of the Srivastava-Pinter addition theorem.