关于广义的(p, q)-特殊多项式

IF 0.3 Q4 MATHEMATICS
U. Duran, M. Acikgoz, S. Araci
{"title":"关于广义的(p, q)-特殊多项式","authors":"U. Duran, M. Acikgoz, S. Araci","doi":"10.3844/JMSSP.2018.129.140","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a new class of generalized (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and investigate their some properties. We derive (p, q)-generalizations of some familiar formulae belonging to classical Bernoulli, Euler and Genocchi polynomials. We also obtain a (p, q)-extension of the Srivastava-Pinter addition theorem.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"11 1","pages":"129-140"},"PeriodicalIF":0.3000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Generalized Some (p, q)-Special Polynomials\",\"authors\":\"U. Duran, M. Acikgoz, S. Araci\",\"doi\":\"10.3844/JMSSP.2018.129.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a new class of generalized (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and investigate their some properties. We derive (p, q)-generalizations of some familiar formulae belonging to classical Bernoulli, Euler and Genocchi polynomials. We also obtain a (p, q)-extension of the Srivastava-Pinter addition theorem.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"11 1\",\"pages\":\"129-140\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2018.129.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.129.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文引入了一类新的广义(p, q)-Bernoulli、(p, q)-Euler和(p, q)-Genocchi多项式,并研究了它们的一些性质。我们导出了经典伯努利多项式、欧拉多项式和格诺奇多项式中一些熟悉公式的(p, q)-推广。我们还得到了Srivastava-Pinter加法定理的一个(p, q)扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Generalized Some (p, q)-Special Polynomials
In this study, we introduce a new class of generalized (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and investigate their some properties. We derive (p, q)-generalizations of some familiar formulae belonging to classical Bernoulli, Euler and Genocchi polynomials. We also obtain a (p, q)-extension of the Srivastava-Pinter addition theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信