应用程序性能监控:减少开销和可维护性之间的权衡

J. Waller, Florian Fittkau, W. Hasselbring
{"title":"应用程序性能监控:减少开销和可维护性之间的权衡","authors":"J. Waller, Florian Fittkau, W. Hasselbring","doi":"10.5281/ZENODO.11428","DOIUrl":null,"url":null,"abstract":"Monitoring of a software system provides insights into its runtime behavior, improving system analysis and comprehension. System-level monitoring approaches focus, e.g., on network monitoring, providing information on externally visible system behavior. Application-level performance monitoring frameworks, such as Kieker or Dapper, allow to observe the internal application behavior, but introduce runtime overhead depending on the number of instrumentation probes. \n \nWe report on how we were able to significantly reduce the runtime overhead of the Kieker monitoring framework. For achieving this optimization, we employed micro-benchmarks with a structured performance engineering approach. During optimization, we kept track of the impact on maintainability of the framework. In this paper, we discuss the emerged trade-off between performance and maintainability in this context. \n \nTo the best of our knowledge, publications on monitoring frameworks provide none or only weak performance evaluations, making comparisons cumbersome. However, our micro-benchmark, presented in this paper, provides a basis for such comparisons. Our experiment code and data are available as open source software such that interested researchers may repeat or extend our experiments for comparison on other hardware platforms or with other monitoring frameworks.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability\",\"authors\":\"J. Waller, Florian Fittkau, W. Hasselbring\",\"doi\":\"10.5281/ZENODO.11428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring of a software system provides insights into its runtime behavior, improving system analysis and comprehension. System-level monitoring approaches focus, e.g., on network monitoring, providing information on externally visible system behavior. Application-level performance monitoring frameworks, such as Kieker or Dapper, allow to observe the internal application behavior, but introduce runtime overhead depending on the number of instrumentation probes. \\n \\nWe report on how we were able to significantly reduce the runtime overhead of the Kieker monitoring framework. For achieving this optimization, we employed micro-benchmarks with a structured performance engineering approach. During optimization, we kept track of the impact on maintainability of the framework. In this paper, we discuss the emerged trade-off between performance and maintainability in this context. \\n \\nTo the best of our knowledge, publications on monitoring frameworks provide none or only weak performance evaluations, making comparisons cumbersome. However, our micro-benchmark, presented in this paper, provides a basis for such comparisons. Our experiment code and data are available as open source software such that interested researchers may repeat or extend our experiments for comparison on other hardware platforms or with other monitoring frameworks.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.11428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.11428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

对软件系统的监视提供了对其运行时行为的洞察,从而改进了系统分析和理解。系统级监视方法侧重于,例如,网络监视,提供关于外部可见的系统行为的信息。应用程序级性能监视框架(如Kieker或Dapper)允许观察内部应用程序行为,但会引入运行时开销,这取决于检测探测的数量。我们将报告我们如何能够显著降低Kieker监视框架的运行时开销。为了实现这种优化,我们采用了带有结构化性能工程方法的微基准测试。在优化过程中,我们跟踪了对框架可维护性的影响。在本文中,我们讨论了在这种情况下出现的性能和可维护性之间的权衡。据我们所知,关于监控框架的出版物没有提供或只提供较弱的性能评估,这使得比较很麻烦。然而,我们在本文中提出的微观基准为这种比较提供了基础。我们的实验代码和数据作为开源软件提供,这样感兴趣的研究人员可以重复或扩展我们的实验,以便在其他硬件平台或其他监测框架上进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability
Monitoring of a software system provides insights into its runtime behavior, improving system analysis and comprehension. System-level monitoring approaches focus, e.g., on network monitoring, providing information on externally visible system behavior. Application-level performance monitoring frameworks, such as Kieker or Dapper, allow to observe the internal application behavior, but introduce runtime overhead depending on the number of instrumentation probes. We report on how we were able to significantly reduce the runtime overhead of the Kieker monitoring framework. For achieving this optimization, we employed micro-benchmarks with a structured performance engineering approach. During optimization, we kept track of the impact on maintainability of the framework. In this paper, we discuss the emerged trade-off between performance and maintainability in this context. To the best of our knowledge, publications on monitoring frameworks provide none or only weak performance evaluations, making comparisons cumbersome. However, our micro-benchmark, presented in this paper, provides a basis for such comparisons. Our experiment code and data are available as open source software such that interested researchers may repeat or extend our experiments for comparison on other hardware platforms or with other monitoring frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信