解分裂等式不动点问题的一个强收敛定理

Xueling Zhou, Mei-xia Li, Hai-tao Che
{"title":"解分裂等式不动点问题的一个强收敛定理","authors":"Xueling Zhou, Mei-xia Li, Hai-tao Che","doi":"10.1142/S0217595921400145","DOIUrl":null,"url":null,"abstract":"In this paper, we study the split equality fixed point problem and propose a new iterative algorithm with a self-adaptive stepsize that does not need the prior information of the operator norms and is calculated easily. The L-Lipschitz and quasi-pseudo-contractive mappings are chosen as the operators in the algorithm since they have a wider range of applications. Moreover, we prove that the sequence generated by the algorithm strongly converges to the solution of the problem. Finally, we check the feasibility and effectiveness of the algorithm by comparing with other algorithms.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Strong Convergence Theorem for Solving the Split Equality Fixed Point Problem\",\"authors\":\"Xueling Zhou, Mei-xia Li, Hai-tao Che\",\"doi\":\"10.1142/S0217595921400145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the split equality fixed point problem and propose a new iterative algorithm with a self-adaptive stepsize that does not need the prior information of the operator norms and is calculated easily. The L-Lipschitz and quasi-pseudo-contractive mappings are chosen as the operators in the algorithm since they have a wider range of applications. Moreover, we prove that the sequence generated by the algorithm strongly converges to the solution of the problem. Finally, we check the feasibility and effectiveness of the algorithm by comparing with other algorithms.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217595921400145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217595921400145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了分裂等式不动点问题,提出了一种新的步长自适应迭代算法,该算法不需要算子范数的先验信息,计算方便。算法中选择L-Lipschitz映射和拟伪压缩映射作为算子,因为它们具有更广泛的应用范围。此外,我们还证明了算法生成的序列强收敛于问题的解。最后,通过与其他算法的比较,验证了该算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Strong Convergence Theorem for Solving the Split Equality Fixed Point Problem
In this paper, we study the split equality fixed point problem and propose a new iterative algorithm with a self-adaptive stepsize that does not need the prior information of the operator norms and is calculated easily. The L-Lipschitz and quasi-pseudo-contractive mappings are chosen as the operators in the algorithm since they have a wider range of applications. Moreover, we prove that the sequence generated by the algorithm strongly converges to the solution of the problem. Finally, we check the feasibility and effectiveness of the algorithm by comparing with other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信