间接学习和闭环估计器在功率放大器数字预失真中的比较

R. Braithwaite
{"title":"间接学习和闭环估计器在功率放大器数字预失真中的比较","authors":"R. Braithwaite","doi":"10.1109/MWSYM.2015.7166826","DOIUrl":null,"url":null,"abstract":"Indirect learning is often used as an estimator in digital predistortion of power amplifiers (PAs). The estimator has inherent flaws that become apparent when signal bandwidths increase. These include coefficient offsets, excessive ADC sampling requirements, and susceptibility to EVM and PA saturation. A comparison to the closed loop estimator shows that these flaws are specific to the indirect learning estimator.","PeriodicalId":6493,"journal":{"name":"2015 IEEE MTT-S International Microwave Symposium","volume":"460 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"A comparison of indirect learning and closed loop estimators used in digital predistortion of power amplifiers\",\"authors\":\"R. Braithwaite\",\"doi\":\"10.1109/MWSYM.2015.7166826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indirect learning is often used as an estimator in digital predistortion of power amplifiers (PAs). The estimator has inherent flaws that become apparent when signal bandwidths increase. These include coefficient offsets, excessive ADC sampling requirements, and susceptibility to EVM and PA saturation. A comparison to the closed loop estimator shows that these flaws are specific to the indirect learning estimator.\",\"PeriodicalId\":6493,\"journal\":{\"name\":\"2015 IEEE MTT-S International Microwave Symposium\",\"volume\":\"460 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE MTT-S International Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2015.7166826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2015.7166826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

间接学习是功率放大器数字预失真中常用的估计方法。当信号带宽增加时,估计器的固有缺陷变得明显。这些因素包括系数偏移,过多的ADC采样要求,以及对EVM和PA饱和的敏感性。与闭环估计器的比较表明,这些缺陷是间接学习估计器特有的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of indirect learning and closed loop estimators used in digital predistortion of power amplifiers
Indirect learning is often used as an estimator in digital predistortion of power amplifiers (PAs). The estimator has inherent flaws that become apparent when signal bandwidths increase. These include coefficient offsets, excessive ADC sampling requirements, and susceptibility to EVM and PA saturation. A comparison to the closed loop estimator shows that these flaws are specific to the indirect learning estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信