具有乘性测量噪声和马尔可夫切换拓扑的随机多智能体系统的一致性稳定性分析

IF 1.1 Q2 MATHEMATICS, APPLIED
Xiaojin Huang, Hongfu Yang, Jianhua Huang
{"title":"具有乘性测量噪声和马尔可夫切换拓扑的随机多智能体系统的一致性稳定性分析","authors":"Xiaojin Huang, Hongfu Yang, Jianhua Huang","doi":"10.3934/naco.2021024","DOIUrl":null,"url":null,"abstract":"We investigate the consensus stability for linear stochastic multi-agent systems with multiplicative noises and Markovian random graphs and investigate the asymptotic consensus in the mean square sense for the systems. To establish the consensus stability for the systems, we analysis the consensus error systems by developing general stochastic differential equation with jumps, matrix theory and algebraic graph theory, and then show that the error consensus in the mean square sense finally tending to zero as time goes on is determined by the strongly connected property of union of topologies. Finally, we provide an example to demonstrate the effectiveness of our theoretical results.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"24 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies\",\"authors\":\"Xiaojin Huang, Hongfu Yang, Jianhua Huang\",\"doi\":\"10.3934/naco.2021024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the consensus stability for linear stochastic multi-agent systems with multiplicative noises and Markovian random graphs and investigate the asymptotic consensus in the mean square sense for the systems. To establish the consensus stability for the systems, we analysis the consensus error systems by developing general stochastic differential equation with jumps, matrix theory and algebraic graph theory, and then show that the error consensus in the mean square sense finally tending to zero as time goes on is determined by the strongly connected property of union of topologies. Finally, we provide an example to demonstrate the effectiveness of our theoretical results.\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有乘性噪声和马尔可夫随机图的线性随机多智能体系统的一致性稳定性,并研究了系统在均方意义上的渐近一致性。为了建立系统的一致性稳定性,利用一般跳跃随机微分方程、矩阵理论和代数图理论对一致性误差系统进行了分析,并证明了误差一致性在均方意义上随着时间的推移最终趋于零是由拓扑并的强连通性质决定的。最后,通过实例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies
We investigate the consensus stability for linear stochastic multi-agent systems with multiplicative noises and Markovian random graphs and investigate the asymptotic consensus in the mean square sense for the systems. To establish the consensus stability for the systems, we analysis the consensus error systems by developing general stochastic differential equation with jumps, matrix theory and algebraic graph theory, and then show that the error consensus in the mean square sense finally tending to zero as time goes on is determined by the strongly connected property of union of topologies. Finally, we provide an example to demonstrate the effectiveness of our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信