{"title":"稳定转染的HEK-293细胞中失活缺陷的人骨骼肌Na +通道(hNav1.4-L443C/A444W","authors":"Sho‐Ya Wang, E. Moczydlowski, G. Wang","doi":"10.3109/10606820490514914","DOIUrl":null,"url":null,"abstract":"After transient transfection of an hNav1.4-L443C/A444W mutant clone, HEK-293 cells exhibited large inactivation-deficient Na+currents. We subsequently established a stable cell line expressing robust inactivation-deficient Na+currents. Persistent late Na+currents were far more sensitive to block by class 1 anti-arrhythmic flecainide, mexiletine, propafenone, and amiodarone at 10 microM than peak Na+currents. Such results support a hypothesis that persistent late Na+currents are in vivo targets for class 1 anti-arrhythmic drugs at their therapeutic plasma concentrations. Stably transfected HEK-293 cells expressing robust inactivation-deficient Na+currents will likely be suitable for screening novel drugs that target persistent late Na+currents selectively.","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"30 1","pages":"131-138"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inactivation-Deficient Human Skeletal Muscle Na + Channels (hNav1.4-L443C/A444W) in Stably Transfected HEK-293 Cells\",\"authors\":\"Sho‐Ya Wang, E. Moczydlowski, G. Wang\",\"doi\":\"10.3109/10606820490514914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After transient transfection of an hNav1.4-L443C/A444W mutant clone, HEK-293 cells exhibited large inactivation-deficient Na+currents. We subsequently established a stable cell line expressing robust inactivation-deficient Na+currents. Persistent late Na+currents were far more sensitive to block by class 1 anti-arrhythmic flecainide, mexiletine, propafenone, and amiodarone at 10 microM than peak Na+currents. Such results support a hypothesis that persistent late Na+currents are in vivo targets for class 1 anti-arrhythmic drugs at their therapeutic plasma concentrations. Stably transfected HEK-293 cells expressing robust inactivation-deficient Na+currents will likely be suitable for screening novel drugs that target persistent late Na+currents selectively.\",\"PeriodicalId\":20928,\"journal\":{\"name\":\"Receptors & channels\",\"volume\":\"30 1\",\"pages\":\"131-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptors & channels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10606820490514914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & channels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10606820490514914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inactivation-Deficient Human Skeletal Muscle Na + Channels (hNav1.4-L443C/A444W) in Stably Transfected HEK-293 Cells
After transient transfection of an hNav1.4-L443C/A444W mutant clone, HEK-293 cells exhibited large inactivation-deficient Na+currents. We subsequently established a stable cell line expressing robust inactivation-deficient Na+currents. Persistent late Na+currents were far more sensitive to block by class 1 anti-arrhythmic flecainide, mexiletine, propafenone, and amiodarone at 10 microM than peak Na+currents. Such results support a hypothesis that persistent late Na+currents are in vivo targets for class 1 anti-arrhythmic drugs at their therapeutic plasma concentrations. Stably transfected HEK-293 cells expressing robust inactivation-deficient Na+currents will likely be suitable for screening novel drugs that target persistent late Na+currents selectively.