空间相关MIMO系统的MAP联合频信道估计

Mingda Zhou, Zhe Feng, Xinming Huang, Y. Liu
{"title":"空间相关MIMO系统的MAP联合频信道估计","authors":"Mingda Zhou, Zhe Feng, Xinming Huang, Y. Liu","doi":"10.1109/GLOBECOM38437.2019.9013268","DOIUrl":null,"url":null,"abstract":"Carrier frequency offset (CFO) and channel estimation is a classic topic with a large body of prior work using the maximum likelihood (ML) approach together with the Cramér-Rao lower bound (CRLB) analysis. We give the maximum a posteriori probability (MAP) estimation solution which is particularly useful for tracking. Unlike the ML cases, the corresponding Bayesian CRLB (BCRLB) shows a clear relation with parameters and a low complexity algorithm achieves the BCRLB in almost all SNR range. We allow the time invariant MIMO channel within a packet to have arbitrary spatial correlation and mean. The estimation is based on pilot signals. An unexpected result is that the joint MAP estimation is equivalent to an individual MAP estimation of the frequency offset first, again different from the ML results. We provide insight on the pilot/training signal design based on the BCRLB. Unlike past algorithms that trade performance and/or complexity for the accommodation of time varying channels, the MAP solution provides a different route for dealing with time variation.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"56 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MAP Joint Frequency and Channel Estimation for MIMO Systems with Spatial Correlation\",\"authors\":\"Mingda Zhou, Zhe Feng, Xinming Huang, Y. Liu\",\"doi\":\"10.1109/GLOBECOM38437.2019.9013268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carrier frequency offset (CFO) and channel estimation is a classic topic with a large body of prior work using the maximum likelihood (ML) approach together with the Cramér-Rao lower bound (CRLB) analysis. We give the maximum a posteriori probability (MAP) estimation solution which is particularly useful for tracking. Unlike the ML cases, the corresponding Bayesian CRLB (BCRLB) shows a clear relation with parameters and a low complexity algorithm achieves the BCRLB in almost all SNR range. We allow the time invariant MIMO channel within a packet to have arbitrary spatial correlation and mean. The estimation is based on pilot signals. An unexpected result is that the joint MAP estimation is equivalent to an individual MAP estimation of the frequency offset first, again different from the ML results. We provide insight on the pilot/training signal design based on the BCRLB. Unlike past algorithms that trade performance and/or complexity for the accommodation of time varying channels, the MAP solution provides a different route for dealing with time variation.\",\"PeriodicalId\":6868,\"journal\":{\"name\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"56 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM38437.2019.9013268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9013268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

载波频偏(CFO)和信道估计是一个经典的主题,使用最大似然(ML)方法和Cramér-Rao下界(CRLB)分析进行了大量的先前工作。我们给出了最大后验概率(MAP)估计解,这对跟踪特别有用。与ML情况不同的是,相应的贝叶斯CRLB (BCRLB)与参数有明确的关系,低复杂度算法可以在几乎所有信噪比范围内实现BCRLB。我们允许一个包内的时不变MIMO信道具有任意的空间相关性和平均值。该估计基于导频信号。一个意想不到的结果是,联合MAP估计相当于首先对频率偏移进行单独MAP估计,这再次不同于ML结果。我们提供了基于BCRLB的飞行员/训练信号设计的见解。与过去的算法不同,为了适应时变信道而牺牲性能和/或复杂性,MAP解决方案为处理时变提供了不同的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAP Joint Frequency and Channel Estimation for MIMO Systems with Spatial Correlation
Carrier frequency offset (CFO) and channel estimation is a classic topic with a large body of prior work using the maximum likelihood (ML) approach together with the Cramér-Rao lower bound (CRLB) analysis. We give the maximum a posteriori probability (MAP) estimation solution which is particularly useful for tracking. Unlike the ML cases, the corresponding Bayesian CRLB (BCRLB) shows a clear relation with parameters and a low complexity algorithm achieves the BCRLB in almost all SNR range. We allow the time invariant MIMO channel within a packet to have arbitrary spatial correlation and mean. The estimation is based on pilot signals. An unexpected result is that the joint MAP estimation is equivalent to an individual MAP estimation of the frequency offset first, again different from the ML results. We provide insight on the pilot/training signal design based on the BCRLB. Unlike past algorithms that trade performance and/or complexity for the accommodation of time varying channels, the MAP solution provides a different route for dealing with time variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信