{"title":"长方体上牛顿势的解析积分及其在快速多极方法中的应用","authors":"Matthias Kirchhart, Donat Weniger","doi":"10.1515/jnma-2020-0103","DOIUrl":null,"url":null,"abstract":"Abstract We present simplified formulae for the analytic integration of the Newton potential of polynomials over boxes in two- and three-dimensional space. These are implemented in an easy-to-use C++ library that allows computations in arbitrary precision arithmetic which is also documented here. We describe how these results can be combined with fast multipole methods to evaluate the Newton potential of more general, non-polynomial densities.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytic integration of the Newton potential over cuboids and an application to fast multipole methods\",\"authors\":\"Matthias Kirchhart, Donat Weniger\",\"doi\":\"10.1515/jnma-2020-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present simplified formulae for the analytic integration of the Newton potential of polynomials over boxes in two- and three-dimensional space. These are implemented in an easy-to-use C++ library that allows computations in arbitrary precision arithmetic which is also documented here. We describe how these results can be combined with fast multipole methods to evaluate the Newton potential of more general, non-polynomial densities.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2020-0103\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2020-0103","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Analytic integration of the Newton potential over cuboids and an application to fast multipole methods
Abstract We present simplified formulae for the analytic integration of the Newton potential of polynomials over boxes in two- and three-dimensional space. These are implemented in an easy-to-use C++ library that allows computations in arbitrary precision arithmetic which is also documented here. We describe how these results can be combined with fast multipole methods to evaluate the Newton potential of more general, non-polynomial densities.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.