第一原理计算研究了pbtio3和PbZr 0.5Ti 0.5 o3中振动熵和热效应的忽略效应

Chenhan Liu, Wei Si, Chao Wu, Juekuan Yang, Yunfei Chen, C. Dames
{"title":"第一原理计算研究了pbtio3和PbZr 0.5Ti 0.5 o3中振动熵和热效应的忽略效应","authors":"Chenhan Liu, Wei Si, Chao Wu, Juekuan Yang, Yunfei Chen, C. Dames","doi":"10.2139/ssrn.3467755","DOIUrl":null,"url":null,"abstract":"In an isothermal process, applying an electric field <i>E</i> to a ferroelectric material can change its entropy <i>S</i> through two distinct mechanisms: namely, through changing the dipole alignment or configurational entropy (<i>ΔS<sub>conf</sub></i>), and the vibrational entropy due to the intrinsic structure response (<i>ΔS<sub>vib</sub></i>). Previous numerical investigations yield only the total entropy change <i>ΔS</i> but cannot separate these two contributions. Here we develop a full first-principles method to extract <i>ΔS<sub>vib</sub></i> and the corresponding induced adiabatic temperature change <i>ΔT<sub>vib</sub></i> under <i>E</i>, i.e. the electrocaloric effect (ECE), and compare them to the total <i>ΔS</i> and <i>ΔT</i> from molecular dynamics simulation based on a first-principles effective Hamiltonian model. For both single crystal PbTiO<sub>3</sub> (PTO) and PbZr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>3</sub> (50/50 PZT), the calculation results show that for <i>T</i> far from the phase transition temperature <i>T<sub>pt</sub></i>, <i>ΔS<sub>vib</sub></i> plays an important and even dominant role in the ECE. On the other hand, for <i>T</i> close to <i>T<sub>pt</sub></i>, <i>ΔS<sub>conf</sub></i> dominates the ECE. Moreover, for PTO, we find that positive <i>E</i> can cause positive ECE, while negative <i>E</i> cause negative ECE. Therefore, by combining both positive and negative ECE in a \"bipolar\" Ericsson cycle, the cooling energy density can significantly increase as compared to that of a unipolar cycle.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Ignored Effects of Vibrational Entropy and Electrocaloric Effect in PbTiO 3 and PbZr 0.5Ti 0.5O 3 as Studied Through First-Principles Calculation\",\"authors\":\"Chenhan Liu, Wei Si, Chao Wu, Juekuan Yang, Yunfei Chen, C. Dames\",\"doi\":\"10.2139/ssrn.3467755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an isothermal process, applying an electric field <i>E</i> to a ferroelectric material can change its entropy <i>S</i> through two distinct mechanisms: namely, through changing the dipole alignment or configurational entropy (<i>ΔS<sub>conf</sub></i>), and the vibrational entropy due to the intrinsic structure response (<i>ΔS<sub>vib</sub></i>). Previous numerical investigations yield only the total entropy change <i>ΔS</i> but cannot separate these two contributions. Here we develop a full first-principles method to extract <i>ΔS<sub>vib</sub></i> and the corresponding induced adiabatic temperature change <i>ΔT<sub>vib</sub></i> under <i>E</i>, i.e. the electrocaloric effect (ECE), and compare them to the total <i>ΔS</i> and <i>ΔT</i> from molecular dynamics simulation based on a first-principles effective Hamiltonian model. For both single crystal PbTiO<sub>3</sub> (PTO) and PbZr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>3</sub> (50/50 PZT), the calculation results show that for <i>T</i> far from the phase transition temperature <i>T<sub>pt</sub></i>, <i>ΔS<sub>vib</sub></i> plays an important and even dominant role in the ECE. On the other hand, for <i>T</i> close to <i>T<sub>pt</sub></i>, <i>ΔS<sub>conf</sub></i> dominates the ECE. Moreover, for PTO, we find that positive <i>E</i> can cause positive ECE, while negative <i>E</i> cause negative ECE. Therefore, by combining both positive and negative ECE in a \\\"bipolar\\\" Ericsson cycle, the cooling energy density can significantly increase as compared to that of a unipolar cycle.\",\"PeriodicalId\":7755,\"journal\":{\"name\":\"AMI: Acta Materialia\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Acta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3467755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3467755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在等温过程中,对铁电材料施加电场E可以通过两种不同的机制改变其熵S:即通过改变偶极子排列或构型熵(ΔSconf),以及由于本征结构响应而引起的振动熵(ΔSvib)。以前的数值研究只得出总熵变ΔS,但不能将这两种贡献分开。本文建立了一种完整的第一性原理方法来提取E即电热效应(ECE)下的ΔSvib和相应的诱导绝热温度变化ΔTvib,并将其与基于第一性原理有效哈密顿模型的分子动力学模拟的总ΔS和ΔT进行比较。对于单晶PbTiO3 (PTO)和PbZr0.5Ti0.5O3 (50/50 PZT),计算结果表明,当T远离相变温度Tpt时,ΔSvib在ECE中起重要甚至主导作用。另一方面,对于接近Tpt的T, ΔSconf在ECE中占主导地位。此外,对于PTO,我们发现正E会导致正ECE,负E会导致负ECE。因此,通过在“双极”爱立信循环中结合正负ECE,与单极循环相比,冷却能量密度可以显着增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ignored Effects of Vibrational Entropy and Electrocaloric Effect in PbTiO 3 and PbZr 0.5Ti 0.5O 3 as Studied Through First-Principles Calculation
In an isothermal process, applying an electric field E to a ferroelectric material can change its entropy S through two distinct mechanisms: namely, through changing the dipole alignment or configurational entropy (ΔSconf), and the vibrational entropy due to the intrinsic structure response (ΔSvib). Previous numerical investigations yield only the total entropy change ΔS but cannot separate these two contributions. Here we develop a full first-principles method to extract ΔSvib and the corresponding induced adiabatic temperature change ΔTvib under E, i.e. the electrocaloric effect (ECE), and compare them to the total ΔS and ΔT from molecular dynamics simulation based on a first-principles effective Hamiltonian model. For both single crystal PbTiO3 (PTO) and PbZr0.5Ti0.5O3 (50/50 PZT), the calculation results show that for T far from the phase transition temperature Tpt, ΔSvib plays an important and even dominant role in the ECE. On the other hand, for T close to Tpt, ΔSconf dominates the ECE. Moreover, for PTO, we find that positive E can cause positive ECE, while negative E cause negative ECE. Therefore, by combining both positive and negative ECE in a "bipolar" Ericsson cycle, the cooling energy density can significantly increase as compared to that of a unipolar cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信