{"title":"一种基于人工神经网络的可扩展散列算法","authors":"J. Tchórzewski, Agnieszka Jakóbik, M. Iacono","doi":"10.34768/amcs-2021-0048","DOIUrl":null,"url":null,"abstract":"Abstract The significant benefits of cloud computing (CC) resulted in an explosion of their usage in the last several years. From the security perspective, CC systems have to offer solutions that fulfil international standards and regulations. In this paper, we propose a model for a hash function having a scalable output. The model is based on an artificial neural network trained to mimic the chaotic behaviour of the Mackey–Glass time series. This hashing method can be used for data integrity checking and digital signature generation. It enables constructing cryptographic services according to the user requirements and time constraints due to scalable output. Extensive simulation experiments are conduced to prove its cryptographic strength, including three tests: a bit prediction test, a series test, and a Hamming distance test. Additionally, flexible hashing function performance tests are run using the CloudSim simulator mimicking a cloud with a global scheduler to investigate the possibility of idle time consumption of virtual machines that may be spent on the scalable hashing protocol. The results obtained show that the proposed hashing method can be used for building light cryptographic protocols. It also enables incorporating the integrity checking algorithm that lowers the idle time of virtual machines during batch task processing.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"47 1","pages":"697 - 712"},"PeriodicalIF":1.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An ANN-based scalable hashing algorithm for computational clouds with schedulers\",\"authors\":\"J. Tchórzewski, Agnieszka Jakóbik, M. Iacono\",\"doi\":\"10.34768/amcs-2021-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The significant benefits of cloud computing (CC) resulted in an explosion of their usage in the last several years. From the security perspective, CC systems have to offer solutions that fulfil international standards and regulations. In this paper, we propose a model for a hash function having a scalable output. The model is based on an artificial neural network trained to mimic the chaotic behaviour of the Mackey–Glass time series. This hashing method can be used for data integrity checking and digital signature generation. It enables constructing cryptographic services according to the user requirements and time constraints due to scalable output. Extensive simulation experiments are conduced to prove its cryptographic strength, including three tests: a bit prediction test, a series test, and a Hamming distance test. Additionally, flexible hashing function performance tests are run using the CloudSim simulator mimicking a cloud with a global scheduler to investigate the possibility of idle time consumption of virtual machines that may be spent on the scalable hashing protocol. The results obtained show that the proposed hashing method can be used for building light cryptographic protocols. It also enables incorporating the integrity checking algorithm that lowers the idle time of virtual machines during batch task processing.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"47 1\",\"pages\":\"697 - 712\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2021-0048\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2021-0048","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An ANN-based scalable hashing algorithm for computational clouds with schedulers
Abstract The significant benefits of cloud computing (CC) resulted in an explosion of their usage in the last several years. From the security perspective, CC systems have to offer solutions that fulfil international standards and regulations. In this paper, we propose a model for a hash function having a scalable output. The model is based on an artificial neural network trained to mimic the chaotic behaviour of the Mackey–Glass time series. This hashing method can be used for data integrity checking and digital signature generation. It enables constructing cryptographic services according to the user requirements and time constraints due to scalable output. Extensive simulation experiments are conduced to prove its cryptographic strength, including three tests: a bit prediction test, a series test, and a Hamming distance test. Additionally, flexible hashing function performance tests are run using the CloudSim simulator mimicking a cloud with a global scheduler to investigate the possibility of idle time consumption of virtual machines that may be spent on the scalable hashing protocol. The results obtained show that the proposed hashing method can be used for building light cryptographic protocols. It also enables incorporating the integrity checking algorithm that lowers the idle time of virtual machines during batch task processing.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.