生物医学钛表面相互作用研究进展

M. Bousnaki, P. Koidis
{"title":"生物医学钛表面相互作用研究进展","authors":"M. Bousnaki, P. Koidis","doi":"10.4028/www.scientific.net/JBBTE.19.43","DOIUrl":null,"url":null,"abstract":"When used as an implanted material, titanium (Ti) surface controls the subsequent biological reactions and leads to tissue integration. Cells interactions with the surface, through a protein layer that is being formed from the moment Ti surface comes in contact with blood and its components, and indeed this protein layer formation, are regulated by surface properties such as topography, chemistry, charge and surface energy. Currently, the implementation of nanotechnology, in an attempt to support mimicking the natural features of extracellular matrix, has provided novel approaches for understanding and translating surface mechanisms whose modification and tailoring are expected to lead to enhanced cell activity and improved integration. Despite the fact that there has been extensive research on this subject, the sequence of interactions that take place instantly after the exposure of the implanted material into the biologic microenvironment are not well documented and need further investigation as well as the optimization of characteristics of Ti surface. This review, including theoretical and experimental studies, summarizes some of the latest advances on the Ti surface concerning modifications on surface properties and how these modifications affect biomolecular reactions and also attempts to present the initial adsorption mechanism of water and protein molecules to the surface.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"55 1","pages":"43 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Advances on Biomedical Titanium Surface Interactions\",\"authors\":\"M. Bousnaki, P. Koidis\",\"doi\":\"10.4028/www.scientific.net/JBBTE.19.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When used as an implanted material, titanium (Ti) surface controls the subsequent biological reactions and leads to tissue integration. Cells interactions with the surface, through a protein layer that is being formed from the moment Ti surface comes in contact with blood and its components, and indeed this protein layer formation, are regulated by surface properties such as topography, chemistry, charge and surface energy. Currently, the implementation of nanotechnology, in an attempt to support mimicking the natural features of extracellular matrix, has provided novel approaches for understanding and translating surface mechanisms whose modification and tailoring are expected to lead to enhanced cell activity and improved integration. Despite the fact that there has been extensive research on this subject, the sequence of interactions that take place instantly after the exposure of the implanted material into the biologic microenvironment are not well documented and need further investigation as well as the optimization of characteristics of Ti surface. This review, including theoretical and experimental studies, summarizes some of the latest advances on the Ti surface concerning modifications on surface properties and how these modifications affect biomolecular reactions and also attempts to present the initial adsorption mechanism of water and protein molecules to the surface.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"55 1\",\"pages\":\"43 - 64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.19.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.19.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当用作植入材料时,钛(Ti)表面控制随后的生物反应并导致组织整合。细胞与表面的相互作用是通过蛋白质层形成的,这种蛋白质层是在钛表面与血液及其成分接触的那一刻形成的,实际上,这种蛋白质层的形成是由表面特性(如地形、化学、电荷和表面能)调节的。目前,纳米技术的实施,试图支持模拟细胞外基质的自然特征,为理解和翻译表面机制提供了新的方法,其修饰和剪裁有望导致增强细胞活性和改善整合。尽管在这方面已经有了广泛的研究,但植入材料暴露于生物微环境后立即发生的相互作用的顺序尚未得到很好的记录,需要进一步的研究以及Ti表面特性的优化。本文从理论和实验两方面综述了钛表面改性及其对生物分子反应的影响,并试图揭示水分子和蛋白质分子在钛表面的初始吸附机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances on Biomedical Titanium Surface Interactions
When used as an implanted material, titanium (Ti) surface controls the subsequent biological reactions and leads to tissue integration. Cells interactions with the surface, through a protein layer that is being formed from the moment Ti surface comes in contact with blood and its components, and indeed this protein layer formation, are regulated by surface properties such as topography, chemistry, charge and surface energy. Currently, the implementation of nanotechnology, in an attempt to support mimicking the natural features of extracellular matrix, has provided novel approaches for understanding and translating surface mechanisms whose modification and tailoring are expected to lead to enhanced cell activity and improved integration. Despite the fact that there has been extensive research on this subject, the sequence of interactions that take place instantly after the exposure of the implanted material into the biologic microenvironment are not well documented and need further investigation as well as the optimization of characteristics of Ti surface. This review, including theoretical and experimental studies, summarizes some of the latest advances on the Ti surface concerning modifications on surface properties and how these modifications affect biomolecular reactions and also attempts to present the initial adsorption mechanism of water and protein molecules to the surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信