{"title":"元胞自动机SIRS+V混合模型中流行病出现的时空动力学","authors":"A. Shabunin","doi":"10.18500/0869-6632-003042","DOIUrl":null,"url":null,"abstract":"Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic cellular automata, which takes into account the inertial nature of infection transmission between individuals. Identification of the relationship between the spatial and temporal dynamics of the model depending on the probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking into account the inertial nature of the transmission of infection between individuals of the population, which is realized by introducing a \"carrier agent\" into the model, which viruses act as. The similarity and difference between the dynamics of the cellular automata model and the previously studied mean field model are revealed. Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such as the regime of undamped oscillations.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"24 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata\",\"authors\":\"A. Shabunin\",\"doi\":\"10.18500/0869-6632-003042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic cellular automata, which takes into account the inertial nature of infection transmission between individuals. Identification of the relationship between the spatial and temporal dynamics of the model depending on the probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking into account the inertial nature of the transmission of infection between individuals of the population, which is realized by introducing a \\\"carrier agent\\\" into the model, which viruses act as. The similarity and difference between the dynamics of the cellular automata model and the previously studied mean field model are revealed. Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such as the regime of undamped oscillations.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata
Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic cellular automata, which takes into account the inertial nature of infection transmission between individuals. Identification of the relationship between the spatial and temporal dynamics of the model depending on the probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking into account the inertial nature of the transmission of infection between individuals of the population, which is realized by introducing a "carrier agent" into the model, which viruses act as. The similarity and difference between the dynamics of the cellular automata model and the previously studied mean field model are revealed. Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such as the regime of undamped oscillations.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.