{"title":"B和D型顶点算子代数的水平-秩对偶性","authors":"Cuipo Jiang, C. Lam","doi":"10.21915/BIMAS.2019103","DOIUrl":null,"url":null,"abstract":"For the simple Lie algebra $ \\frak{so}_m$, we study the commutant vertex operator algebra of $ L_{\\widehat{\\frak{so}}_{m}}(n,0)$ in the $n$-fold tensor product $ L_{\\widehat{\\frak{so}}_{m}}(1,0)^{\\otimes n}$. It turns out that this commutant vertex operator algebra can be realized as a fixed point subalgebra of $L_{\\widehat{\\frak{so}}_{n}}(m,0)$ (or its simple current extension) associated with a certain abelian group. This result may be viewed as a version of level-rank duality.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"38 11 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2017-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Level-Rank Duality for Vertex Operator Algebras of types B and D\",\"authors\":\"Cuipo Jiang, C. Lam\",\"doi\":\"10.21915/BIMAS.2019103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the simple Lie algebra $ \\\\frak{so}_m$, we study the commutant vertex operator algebra of $ L_{\\\\widehat{\\\\frak{so}}_{m}}(n,0)$ in the $n$-fold tensor product $ L_{\\\\widehat{\\\\frak{so}}_{m}}(1,0)^{\\\\otimes n}$. It turns out that this commutant vertex operator algebra can be realized as a fixed point subalgebra of $L_{\\\\widehat{\\\\frak{so}}_{n}}(m,0)$ (or its simple current extension) associated with a certain abelian group. This result may be viewed as a version of level-rank duality.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"38 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/BIMAS.2019103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2019103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Level-Rank Duality for Vertex Operator Algebras of types B and D
For the simple Lie algebra $ \frak{so}_m$, we study the commutant vertex operator algebra of $ L_{\widehat{\frak{so}}_{m}}(n,0)$ in the $n$-fold tensor product $ L_{\widehat{\frak{so}}_{m}}(1,0)^{\otimes n}$. It turns out that this commutant vertex operator algebra can be realized as a fixed point subalgebra of $L_{\widehat{\frak{so}}_{n}}(m,0)$ (or its simple current extension) associated with a certain abelian group. This result may be viewed as a version of level-rank duality.