非结构化户外环境下实时语义分割性能改进研究

Daeyoung Kim, Seunguk Ahn, Seung-Woo Seo
{"title":"非结构化户外环境下实时语义分割性能改进研究","authors":"Daeyoung Kim, Seunguk Ahn, Seung-Woo Seo","doi":"10.9766/kimst.2022.25.6.606","DOIUrl":null,"url":null,"abstract":"Semantic segmentation in autonomous driving for unstructured environments is challenging due to the presence of uneven terrains, unstructured class boundaries, irregular features and strong textures. Current off-road datasets exhibit difficulties like class imbalance and understanding of varying environmental topography. To overcome these issues, we propose a deep learning framework for semantic segmentation that involves a pooled class semantic segmentation with five classes. The evaluation of the framework is carried out on two off-road driving datasets, RUGD and TAS500. The results show that our proposed method achieves high accuracy and real-time performance.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Real-time Semantic Segmentation Performance Improvement in Unstructured Outdoor Environment\",\"authors\":\"Daeyoung Kim, Seunguk Ahn, Seung-Woo Seo\",\"doi\":\"10.9766/kimst.2022.25.6.606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation in autonomous driving for unstructured environments is challenging due to the presence of uneven terrains, unstructured class boundaries, irregular features and strong textures. Current off-road datasets exhibit difficulties like class imbalance and understanding of varying environmental topography. To overcome these issues, we propose a deep learning framework for semantic segmentation that involves a pooled class semantic segmentation with five classes. The evaluation of the framework is carried out on two off-road driving datasets, RUGD and TAS500. The results show that our proposed method achieves high accuracy and real-time performance.\",\"PeriodicalId\":17292,\"journal\":{\"name\":\"Journal of the Korea Institute of Military Science and Technology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Institute of Military Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9766/kimst.2022.25.6.606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2022.25.6.606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于存在不平坦的地形、非结构化的类别边界、不规则的特征和强烈的纹理,在非结构化环境中自动驾驶的语义分割具有挑战性。当前的越野数据集表现出诸如类别不平衡和对不同环境地形的理解等困难。为了克服这些问题,我们提出了一个语义分割的深度学习框架,该框架涉及五个类的池类语义分割。在RUGD和TAS500两个越野驾驶数据集上对该框架进行了评估。结果表明,该方法具有较高的精度和实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Real-time Semantic Segmentation Performance Improvement in Unstructured Outdoor Environment
Semantic segmentation in autonomous driving for unstructured environments is challenging due to the presence of uneven terrains, unstructured class boundaries, irregular features and strong textures. Current off-road datasets exhibit difficulties like class imbalance and understanding of varying environmental topography. To overcome these issues, we propose a deep learning framework for semantic segmentation that involves a pooled class semantic segmentation with five classes. The evaluation of the framework is carried out on two off-road driving datasets, RUGD and TAS500. The results show that our proposed method achieves high accuracy and real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信