{"title":"一类奇异Vlasov方程的局部适定性","authors":"Thomas Chaub","doi":"10.3934/krm.2022027","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this article we study a singular Vlasov system on the torus where the force field has the smoothness of a (fractional) derivative <inline-formula><tex-math id=\"M1\">\\begin{document}$ D^{\\alpha} $\\end{document}</tex-math></inline-formula> of the density, where <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\alpha>0 $\\end{document}</tex-math></inline-formula>. We prove local well-posedness in Sobolev spaces without restriction on the data. This is in sharp contrast with the case <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\alpha = 0 $\\end{document}</tex-math></inline-formula> which is ill-posed in Sobolev spaces for general data.</p>","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local well-posedness for a class of singular Vlasov equations\",\"authors\":\"Thomas Chaub\",\"doi\":\"10.3934/krm.2022027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this article we study a singular Vlasov system on the torus where the force field has the smoothness of a (fractional) derivative <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ D^{\\\\alpha} $\\\\end{document}</tex-math></inline-formula> of the density, where <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\alpha>0 $\\\\end{document}</tex-math></inline-formula>. We prove local well-posedness in Sobolev spaces without restriction on the data. This is in sharp contrast with the case <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\alpha = 0 $\\\\end{document}</tex-math></inline-formula> which is ill-posed in Sobolev spaces for general data.</p>\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
In this article we study a singular Vlasov system on the torus where the force field has the smoothness of a (fractional) derivative \begin{document}$ D^{\alpha} $\end{document} of the density, where \begin{document}$ \alpha>0 $\end{document}. We prove local well-posedness in Sobolev spaces without restriction on the data. This is in sharp contrast with the case \begin{document}$ \alpha = 0 $\end{document} which is ill-posed in Sobolev spaces for general data.
Local well-posedness for a class of singular Vlasov equations
In this article we study a singular Vlasov system on the torus where the force field has the smoothness of a (fractional) derivative \begin{document}$ D^{\alpha} $\end{document} of the density, where \begin{document}$ \alpha>0 $\end{document}. We prove local well-posedness in Sobolev spaces without restriction on the data. This is in sharp contrast with the case \begin{document}$ \alpha = 0 $\end{document} which is ill-posed in Sobolev spaces for general data.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.