简化有限关联代数及其自同构

M. Dugas, D. Herden, Jack Rebrovich
{"title":"简化有限关联代数及其自同构","authors":"M. Dugas, D. Herden, Jack Rebrovich","doi":"10.1142/s0218196722500047","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] denote the incidence algebra of a locally finite poset [Formula: see text] over a field [Formula: see text] and [Formula: see text] some equivalence relation on the set of generators of [Formula: see text]. Then [Formula: see text] is the subset of [Formula: see text] of all the elements that are constant on the equivalence classes of [Formula: see text]. If [Formula: see text] satisfies certain conditions, then [Formula: see text] is a subalgebra of [Formula: see text] called a reduced incidence algebra. We extend this notion to finitary incidence algebras [Formula: see text] for any poset [Formula: see text]. We investigate reduced finitary incidence algebras [Formula: see text] and determine their automorphisms in some special cases.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"263 1","pages":"85-114"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced finitary incidence algebras and their automorphisms\",\"authors\":\"M. Dugas, D. Herden, Jack Rebrovich\",\"doi\":\"10.1142/s0218196722500047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] denote the incidence algebra of a locally finite poset [Formula: see text] over a field [Formula: see text] and [Formula: see text] some equivalence relation on the set of generators of [Formula: see text]. Then [Formula: see text] is the subset of [Formula: see text] of all the elements that are constant on the equivalence classes of [Formula: see text]. If [Formula: see text] satisfies certain conditions, then [Formula: see text] is a subalgebra of [Formula: see text] called a reduced incidence algebra. We extend this notion to finitary incidence algebras [Formula: see text] for any poset [Formula: see text]. We investigate reduced finitary incidence algebras [Formula: see text] and determine their automorphisms in some special cases.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"263 1\",\"pages\":\"85-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]表示域上的局部有限偏序集[公式:见文]的关联代数,[公式:见文]和[公式:见文]的生成集上的某种等价关系。那么[公式:见文]是[公式:见文]的等价类上所有常量元素的[公式:见文]的子集。如果[公式:见文]满足一定条件,则[公式:见文]是[公式:见文]的子代数,称为约关联代数。我们将这个概念推广到任意偏序集的有限关联代数[公式:见文]。我们研究了简化有限关联代数[公式:见正文],并在一些特殊情况下确定了它们的自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced finitary incidence algebras and their automorphisms
Let [Formula: see text] denote the incidence algebra of a locally finite poset [Formula: see text] over a field [Formula: see text] and [Formula: see text] some equivalence relation on the set of generators of [Formula: see text]. Then [Formula: see text] is the subset of [Formula: see text] of all the elements that are constant on the equivalence classes of [Formula: see text]. If [Formula: see text] satisfies certain conditions, then [Formula: see text] is a subalgebra of [Formula: see text] called a reduced incidence algebra. We extend this notion to finitary incidence algebras [Formula: see text] for any poset [Formula: see text]. We investigate reduced finitary incidence algebras [Formula: see text] and determine their automorphisms in some special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信