{"title":"椰壳灰(CHA)增强聚酯复合材料物理力学性能及动态力学性能评价","authors":"T. Ipilakyaa","doi":"10.30464/JMEE.2020.4.4.315","DOIUrl":null,"url":null,"abstract":"The evaluation of physical and dynamic mechanical analysis (DMA) properties was carried out using developed CHA Reinforced Polymer Composite. Sieve analysis of pretreated CHA was done to obtain 75 µm, 150 µm and 300 µm particles sizes. These particles were used at varying compositions of 5%, 10%, 15%, 20% and 25% as reinforcements for polyester composites. The catalyst and accelerator used were Methyl Ethyl Ketone Peroxide and Cobalt Naphthenate respectively. The densities of the evaluated composites made with 150 μm particles were found to be less dense with values ranging from 0.9792 g/cm3 to 1.2561 g/cm3 than those made with 75μm and 300μm. The results also show that the percentage water absorbed by samples increased, ranging from 0 to over 2000 E’/MPa for all percentage reinforcements of CHA, with an increase in the duration of immersion of the samples in distilled water. However, 25% reinforcement had better results for all particle sizes. There were obvious variations of storage modulus, loss modulus and mechanical loss factor with percentage weight of reinforcement, temperature and frequency. The composite with 15 % reinforcement displayed better results and can be used as a material for interior components in aerospace and automobile industries.","PeriodicalId":32811,"journal":{"name":"JEMMME Journal of Energy Mechanical Material and Manufacturing Engineering","volume":"35 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of physical and dynamic mechanical properties of coconut husk ash (CHA) reinforced polyester composites\",\"authors\":\"T. Ipilakyaa\",\"doi\":\"10.30464/JMEE.2020.4.4.315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaluation of physical and dynamic mechanical analysis (DMA) properties was carried out using developed CHA Reinforced Polymer Composite. Sieve analysis of pretreated CHA was done to obtain 75 µm, 150 µm and 300 µm particles sizes. These particles were used at varying compositions of 5%, 10%, 15%, 20% and 25% as reinforcements for polyester composites. The catalyst and accelerator used were Methyl Ethyl Ketone Peroxide and Cobalt Naphthenate respectively. The densities of the evaluated composites made with 150 μm particles were found to be less dense with values ranging from 0.9792 g/cm3 to 1.2561 g/cm3 than those made with 75μm and 300μm. The results also show that the percentage water absorbed by samples increased, ranging from 0 to over 2000 E’/MPa for all percentage reinforcements of CHA, with an increase in the duration of immersion of the samples in distilled water. However, 25% reinforcement had better results for all particle sizes. There were obvious variations of storage modulus, loss modulus and mechanical loss factor with percentage weight of reinforcement, temperature and frequency. The composite with 15 % reinforcement displayed better results and can be used as a material for interior components in aerospace and automobile industries.\",\"PeriodicalId\":32811,\"journal\":{\"name\":\"JEMMME Journal of Energy Mechanical Material and Manufacturing Engineering\",\"volume\":\"35 9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JEMMME Journal of Energy Mechanical Material and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30464/JMEE.2020.4.4.315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEMMME Journal of Energy Mechanical Material and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30464/JMEE.2020.4.4.315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of physical and dynamic mechanical properties of coconut husk ash (CHA) reinforced polyester composites
The evaluation of physical and dynamic mechanical analysis (DMA) properties was carried out using developed CHA Reinforced Polymer Composite. Sieve analysis of pretreated CHA was done to obtain 75 µm, 150 µm and 300 µm particles sizes. These particles were used at varying compositions of 5%, 10%, 15%, 20% and 25% as reinforcements for polyester composites. The catalyst and accelerator used were Methyl Ethyl Ketone Peroxide and Cobalt Naphthenate respectively. The densities of the evaluated composites made with 150 μm particles were found to be less dense with values ranging from 0.9792 g/cm3 to 1.2561 g/cm3 than those made with 75μm and 300μm. The results also show that the percentage water absorbed by samples increased, ranging from 0 to over 2000 E’/MPa for all percentage reinforcements of CHA, with an increase in the duration of immersion of the samples in distilled water. However, 25% reinforcement had better results for all particle sizes. There were obvious variations of storage modulus, loss modulus and mechanical loss factor with percentage weight of reinforcement, temperature and frequency. The composite with 15 % reinforcement displayed better results and can be used as a material for interior components in aerospace and automobile industries.