Minje Choi, Donggyun Ku, Hyeri Jeong, Seungjae Lee
{"title":"使用人工智能检测将COVID - 19传播与公共交通中佩戴口罩的比率进行比较","authors":"Minje Choi, Donggyun Ku, Hyeri Jeong, Seungjae Lee","doi":"10.1680/jmuen.22.00037","DOIUrl":null,"url":null,"abstract":"The spread of COVID-19 has resulted in several changes worldwide. In particular, border closures and economic stagnation have significantly affected societies. Although the implementation of preventive measures has improved the pandemic scenario in several countries, the effectiveness of vaccines has decreased with the emergence of mutant viruses. With this background, the use of masks is considered the best method for preventing the spread of the virus. Notably, public transportation is closely related to socioeconomic activities, and the spread of infectious diseases is more likely in closed, dense, and congested areas. Moreover, the probability of infection during public transportation also depends on the proportion of commuters wearing masks. Based on the closed-circuit television footage of various public transportation spaces, the number of mask wearers can be analysed using artificial intelligence deep learning, and the probability of COVID-19 spread can be predicted by determining the proportion of mask wearers among the commuters. With this background, in this study, the importance of masks in controlling the spread of the virus is confirmed. In conclusion, appropriate measures can be implemented by determining the probability of infection according to the mask-wearing rate in public transportation spaces.","PeriodicalId":54571,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Municipal Engineer","volume":"15 3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing COVID spread to mask-wearing rates in public transportation using AI detection\",\"authors\":\"Minje Choi, Donggyun Ku, Hyeri Jeong, Seungjae Lee\",\"doi\":\"10.1680/jmuen.22.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spread of COVID-19 has resulted in several changes worldwide. In particular, border closures and economic stagnation have significantly affected societies. Although the implementation of preventive measures has improved the pandemic scenario in several countries, the effectiveness of vaccines has decreased with the emergence of mutant viruses. With this background, the use of masks is considered the best method for preventing the spread of the virus. Notably, public transportation is closely related to socioeconomic activities, and the spread of infectious diseases is more likely in closed, dense, and congested areas. Moreover, the probability of infection during public transportation also depends on the proportion of commuters wearing masks. Based on the closed-circuit television footage of various public transportation spaces, the number of mask wearers can be analysed using artificial intelligence deep learning, and the probability of COVID-19 spread can be predicted by determining the proportion of mask wearers among the commuters. With this background, in this study, the importance of masks in controlling the spread of the virus is confirmed. In conclusion, appropriate measures can be implemented by determining the probability of infection according to the mask-wearing rate in public transportation spaces.\",\"PeriodicalId\":54571,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Municipal Engineer\",\"volume\":\"15 3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Municipal Engineer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jmuen.22.00037\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Municipal Engineer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmuen.22.00037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Comparing COVID spread to mask-wearing rates in public transportation using AI detection
The spread of COVID-19 has resulted in several changes worldwide. In particular, border closures and economic stagnation have significantly affected societies. Although the implementation of preventive measures has improved the pandemic scenario in several countries, the effectiveness of vaccines has decreased with the emergence of mutant viruses. With this background, the use of masks is considered the best method for preventing the spread of the virus. Notably, public transportation is closely related to socioeconomic activities, and the spread of infectious diseases is more likely in closed, dense, and congested areas. Moreover, the probability of infection during public transportation also depends on the proportion of commuters wearing masks. Based on the closed-circuit television footage of various public transportation spaces, the number of mask wearers can be analysed using artificial intelligence deep learning, and the probability of COVID-19 spread can be predicted by determining the proportion of mask wearers among the commuters. With this background, in this study, the importance of masks in controlling the spread of the virus is confirmed. In conclusion, appropriate measures can be implemented by determining the probability of infection according to the mask-wearing rate in public transportation spaces.
期刊介绍:
Municipal Engineer publishes international peer reviewed research, best practice, case study and project papers reports. The journal proudly enjoys an international readership and actively encourages international Panel members and authors. The journal covers the effect of civil engineering on local community such as technical issues, political interface and community participation, the sustainability agenda, cultural context, and the key dimensions of procurement, management and finance. This also includes public services, utilities, and transport. Research needs to be transferable and of interest to a wide international audience. Please ensure that municipal aspects are considered in all submissions. We are happy to consider research papers/reviews/briefing articles.