基于树的分层视觉内容建模和查询

Q4 Computer Science
A. Setyanto
{"title":"基于树的分层视觉内容建模和查询","authors":"A. Setyanto","doi":"10.5565/REV/ELCVIA.952","DOIUrl":null,"url":null,"abstract":"In recent years, such vast archives of video information have become available that human annotation of content is no longer feasible; automation of video content analysis is therefore highly desirable. The recognition of semantic content in images is a problem that relies on prior knowledge and learnt information and that, to date, has only been partially solved. Salient analysis, on the other hand, is statistically based and highlights regions that are distinct from their surroundings, while also being scalable and repeatable. The arrangement of salient information into hierarchical tree structures in the spatial and temporal domains forms an important step to bridge the semantic salient gap. Salient regions are identified using region analysis, rank ordered and documented in a tree for further analysis. A structure of this kind contains all the information in the original video and forms an intermediary between video processing and video understanding, transforming video analysis to a syntactic database analysis problem. This contribution demonstrates the formulation of spatio-temporal salient trees the syntax to index them, and provides an interface for higher level cognition in machine vision.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":"45 1","pages":"40-42"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical visual content modelling and query based on trees\",\"authors\":\"A. Setyanto\",\"doi\":\"10.5565/REV/ELCVIA.952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, such vast archives of video information have become available that human annotation of content is no longer feasible; automation of video content analysis is therefore highly desirable. The recognition of semantic content in images is a problem that relies on prior knowledge and learnt information and that, to date, has only been partially solved. Salient analysis, on the other hand, is statistically based and highlights regions that are distinct from their surroundings, while also being scalable and repeatable. The arrangement of salient information into hierarchical tree structures in the spatial and temporal domains forms an important step to bridge the semantic salient gap. Salient regions are identified using region analysis, rank ordered and documented in a tree for further analysis. A structure of this kind contains all the information in the original video and forms an intermediary between video processing and video understanding, transforming video analysis to a syntactic database analysis problem. This contribution demonstrates the formulation of spatio-temporal salient trees the syntax to index them, and provides an interface for higher level cognition in machine vision.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\"45 1\",\"pages\":\"40-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/REV/ELCVIA.952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/REV/ELCVIA.952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

近年来,庞大的视频信息档案已经变得可用,人工注释内容已不再可行;因此,视频内容分析的自动化是非常可取的。图像中语义内容的识别是一个依赖于先验知识和学习信息的问题,到目前为止,这个问题只得到了部分解决。另一方面,显著性分析是基于统计的,突出了与周围环境不同的区域,同时也具有可扩展性和可重复性。将显著性信息在空间和时间域中排列成层次树结构是弥合语义显著性差距的重要步骤。使用区域分析确定突出区域,排序并记录在树中以供进一步分析。这种结构包含了原始视频中的所有信息,并在视频处理和视频理解之间形成了一个中介,将视频分析转化为一个句法数据库分析问题。这一贡献展示了时空显著树的公式以及索引它们的语法,并为机器视觉中更高层次的认知提供了一个接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical visual content modelling and query based on trees
In recent years, such vast archives of video information have become available that human annotation of content is no longer feasible; automation of video content analysis is therefore highly desirable. The recognition of semantic content in images is a problem that relies on prior knowledge and learnt information and that, to date, has only been partially solved. Salient analysis, on the other hand, is statistically based and highlights regions that are distinct from their surroundings, while also being scalable and repeatable. The arrangement of salient information into hierarchical tree structures in the spatial and temporal domains forms an important step to bridge the semantic salient gap. Salient regions are identified using region analysis, rank ordered and documented in a tree for further analysis. A structure of this kind contains all the information in the original video and forms an intermediary between video processing and video understanding, transforming video analysis to a syntactic database analysis problem. This contribution demonstrates the formulation of spatio-temporal salient trees the syntax to index them, and provides an interface for higher level cognition in machine vision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信