基于边界学习的最小后处理自组织文本检测

Yue Wu, P. Natarajan
{"title":"基于边界学习的最小后处理自组织文本检测","authors":"Yue Wu, P. Natarajan","doi":"10.1109/ICCV.2017.535","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new solution to the text detection problem via border learning. Specifically, we make four major contributions: 1) We analyze the insufficiencies of the classic non-text and text settings for text detection. 2) We introduce the border class to the text detection problem for the first time, and validate that the decoding process is largely simplified with the help of text border. 3) We collect and release a new text detection PPT dataset containing 10,692 images with non-text, border, and text annotations. 4) We develop a lightweight (only 0.28M parameters), fully convolutional network (FCN) to effectively learn borders in text images. The results of our extensive experiments show that the proposed solution achieves comparable performance, and often outperforms state-of-theart approaches on standard benchmarks–even though our solution only requires minimal post-processing to parse a bounding box from a detected text map, while others often require heavy post-processing.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"2 1","pages":"5010-5019"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Self-Organized Text Detection with Minimal Post-processing via Border Learning\",\"authors\":\"Yue Wu, P. Natarajan\",\"doi\":\"10.1109/ICCV.2017.535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new solution to the text detection problem via border learning. Specifically, we make four major contributions: 1) We analyze the insufficiencies of the classic non-text and text settings for text detection. 2) We introduce the border class to the text detection problem for the first time, and validate that the decoding process is largely simplified with the help of text border. 3) We collect and release a new text detection PPT dataset containing 10,692 images with non-text, border, and text annotations. 4) We develop a lightweight (only 0.28M parameters), fully convolutional network (FCN) to effectively learn borders in text images. The results of our extensive experiments show that the proposed solution achieves comparable performance, and often outperforms state-of-theart approaches on standard benchmarks–even though our solution only requires minimal post-processing to parse a bounding box from a detected text map, while others often require heavy post-processing.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"2 1\",\"pages\":\"5010-5019\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

本文提出了一种基于边界学习的文本检测方法。具体来说,我们做出了四个主要贡献:1)我们分析了经典的非文本和文本设置在文本检测中的不足。2)首次将边界类引入到文本检测问题中,验证了在文本边界的帮助下,解码过程大大简化。3)我们收集并发布了一个新的文本检测PPT数据集,包含10692张带有非文本、边框和文本注释的图片。4)我们开发了一个轻量级的(只有0.28M个参数),全卷积网络(FCN)来有效地学习文本图像中的边界。我们广泛的实验结果表明,提出的解决方案实现了相当的性能,并且在标准基准上通常优于当前的方法——尽管我们的解决方案只需要最少的后处理,就可以从检测到的文本映射中解析边界框,而其他解决方案通常需要大量的后处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Organized Text Detection with Minimal Post-processing via Border Learning
In this paper we propose a new solution to the text detection problem via border learning. Specifically, we make four major contributions: 1) We analyze the insufficiencies of the classic non-text and text settings for text detection. 2) We introduce the border class to the text detection problem for the first time, and validate that the decoding process is largely simplified with the help of text border. 3) We collect and release a new text detection PPT dataset containing 10,692 images with non-text, border, and text annotations. 4) We develop a lightweight (only 0.28M parameters), fully convolutional network (FCN) to effectively learn borders in text images. The results of our extensive experiments show that the proposed solution achieves comparable performance, and often outperforms state-of-theart approaches on standard benchmarks–even though our solution only requires minimal post-processing to parse a bounding box from a detected text map, while others often require heavy post-processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信