{"title":"基于边界学习的最小后处理自组织文本检测","authors":"Yue Wu, P. Natarajan","doi":"10.1109/ICCV.2017.535","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new solution to the text detection problem via border learning. Specifically, we make four major contributions: 1) We analyze the insufficiencies of the classic non-text and text settings for text detection. 2) We introduce the border class to the text detection problem for the first time, and validate that the decoding process is largely simplified with the help of text border. 3) We collect and release a new text detection PPT dataset containing 10,692 images with non-text, border, and text annotations. 4) We develop a lightweight (only 0.28M parameters), fully convolutional network (FCN) to effectively learn borders in text images. The results of our extensive experiments show that the proposed solution achieves comparable performance, and often outperforms state-of-theart approaches on standard benchmarks–even though our solution only requires minimal post-processing to parse a bounding box from a detected text map, while others often require heavy post-processing.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"2 1","pages":"5010-5019"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Self-Organized Text Detection with Minimal Post-processing via Border Learning\",\"authors\":\"Yue Wu, P. Natarajan\",\"doi\":\"10.1109/ICCV.2017.535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new solution to the text detection problem via border learning. Specifically, we make four major contributions: 1) We analyze the insufficiencies of the classic non-text and text settings for text detection. 2) We introduce the border class to the text detection problem for the first time, and validate that the decoding process is largely simplified with the help of text border. 3) We collect and release a new text detection PPT dataset containing 10,692 images with non-text, border, and text annotations. 4) We develop a lightweight (only 0.28M parameters), fully convolutional network (FCN) to effectively learn borders in text images. The results of our extensive experiments show that the proposed solution achieves comparable performance, and often outperforms state-of-theart approaches on standard benchmarks–even though our solution only requires minimal post-processing to parse a bounding box from a detected text map, while others often require heavy post-processing.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"2 1\",\"pages\":\"5010-5019\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Organized Text Detection with Minimal Post-processing via Border Learning
In this paper we propose a new solution to the text detection problem via border learning. Specifically, we make four major contributions: 1) We analyze the insufficiencies of the classic non-text and text settings for text detection. 2) We introduce the border class to the text detection problem for the first time, and validate that the decoding process is largely simplified with the help of text border. 3) We collect and release a new text detection PPT dataset containing 10,692 images with non-text, border, and text annotations. 4) We develop a lightweight (only 0.28M parameters), fully convolutional network (FCN) to effectively learn borders in text images. The results of our extensive experiments show that the proposed solution achieves comparable performance, and often outperforms state-of-theart approaches on standard benchmarks–even though our solution only requires minimal post-processing to parse a bounding box from a detected text map, while others often require heavy post-processing.