SimSeerX:一个类似的文档搜索引擎

Kyle Williams, Jian Wu, C. Lee Giles
{"title":"SimSeerX:一个类似的文档搜索引擎","authors":"Kyle Williams, Jian Wu, C. Lee Giles","doi":"10.1145/2644866.2644895","DOIUrl":null,"url":null,"abstract":"The need to find similar documents occurs in many settings, such as in plagiarism detection or research paper recommendation. Manually constructing queries to find similar documents may be overly complex, thus motivating the use of whole documents as queries. This paper introduces SimSeerX, a search engine for similar document retrieval that receives whole documents as queries and returns a ranked list of similar documents. Key to the design of SimSeerX is that is able to work with multiple similarity functions and document collections. We present the architecture and interface of SimSeerX, show its applicability with 3 different similarity functions and demonstrate its scalability on a collection of 3.5 million academic documents.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"96 1","pages":"143-146"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"SimSeerX: a similar document search engine\",\"authors\":\"Kyle Williams, Jian Wu, C. Lee Giles\",\"doi\":\"10.1145/2644866.2644895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to find similar documents occurs in many settings, such as in plagiarism detection or research paper recommendation. Manually constructing queries to find similar documents may be overly complex, thus motivating the use of whole documents as queries. This paper introduces SimSeerX, a search engine for similar document retrieval that receives whole documents as queries and returns a ranked list of similar documents. Key to the design of SimSeerX is that is able to work with multiple similarity functions and document collections. We present the architecture and interface of SimSeerX, show its applicability with 3 different similarity functions and demonstrate its scalability on a collection of 3.5 million academic documents.\",\"PeriodicalId\":91385,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering\",\"volume\":\"96 1\",\"pages\":\"143-146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2644866.2644895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2644866.2644895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在许多情况下都需要查找类似的文档,例如在抄袭检测或研究论文推荐中。手动构造查找类似文档的查询可能过于复杂,因此会促使使用整个文档作为查询。本文介绍了SimSeerX,一个用于相似文档检索的搜索引擎,它接收整个文档作为查询,并返回相似文档的排序列表。SimSeerX设计的关键在于它能够处理多个相似函数和文档集合。介绍了SimSeerX的体系结构和接口,用3种不同的相似度函数展示了SimSeerX的适用性,并在350万篇学术文献上展示了SimSeerX的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SimSeerX: a similar document search engine
The need to find similar documents occurs in many settings, such as in plagiarism detection or research paper recommendation. Manually constructing queries to find similar documents may be overly complex, thus motivating the use of whole documents as queries. This paper introduces SimSeerX, a search engine for similar document retrieval that receives whole documents as queries and returns a ranked list of similar documents. Key to the design of SimSeerX is that is able to work with multiple similarity functions and document collections. We present the architecture and interface of SimSeerX, show its applicability with 3 different similarity functions and demonstrate its scalability on a collection of 3.5 million academic documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信