Ashkan Pourkand, Christopher White, Naghmeh Zamani, David I. Grow
{"title":"汽车表面识别:神经网络的综合方法","authors":"Ashkan Pourkand, Christopher White, Naghmeh Zamani, David I. Grow","doi":"10.1115/dscc2019-9148","DOIUrl":null,"url":null,"abstract":"\n This paper explores the viability of neural-network-based classification of ground surface for vehicles. By classifying road surface in near real-time, improvements in vehicle performance (e.g. braking and cornering) may be possible. Classification performance for many combinations of feature encoding and neural network types are compared. The vehicle used here was an Audi “S3” with a magnetic suspension system on the Sport mode. An NI CompactRIO (or cDAQ) module was used to record from a lowing the cDAQ to communicate with the PCB 352C03 one-axis accelerometer. The accelerometer was firmly attached to the windshield of the car. This work focuses on the classification of four road surfaces (asphalt, dirt, concrete, and sand), though larger target sets were also considered. The most accurate method involved a MATLAB feature extraction package with a back-propagation neural network, yielding an overall accuracy of 97%. Lessons learned from this wide exploration of options may extend to other related classification problems.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface Recognition for Cars: A Comprehensive Approach for Neural Networks\",\"authors\":\"Ashkan Pourkand, Christopher White, Naghmeh Zamani, David I. Grow\",\"doi\":\"10.1115/dscc2019-9148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper explores the viability of neural-network-based classification of ground surface for vehicles. By classifying road surface in near real-time, improvements in vehicle performance (e.g. braking and cornering) may be possible. Classification performance for many combinations of feature encoding and neural network types are compared. The vehicle used here was an Audi “S3” with a magnetic suspension system on the Sport mode. An NI CompactRIO (or cDAQ) module was used to record from a lowing the cDAQ to communicate with the PCB 352C03 one-axis accelerometer. The accelerometer was firmly attached to the windshield of the car. This work focuses on the classification of four road surfaces (asphalt, dirt, concrete, and sand), though larger target sets were also considered. The most accurate method involved a MATLAB feature extraction package with a back-propagation neural network, yielding an overall accuracy of 97%. Lessons learned from this wide exploration of options may extend to other related classification problems.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Surface Recognition for Cars: A Comprehensive Approach for Neural Networks
This paper explores the viability of neural-network-based classification of ground surface for vehicles. By classifying road surface in near real-time, improvements in vehicle performance (e.g. braking and cornering) may be possible. Classification performance for many combinations of feature encoding and neural network types are compared. The vehicle used here was an Audi “S3” with a magnetic suspension system on the Sport mode. An NI CompactRIO (or cDAQ) module was used to record from a lowing the cDAQ to communicate with the PCB 352C03 one-axis accelerometer. The accelerometer was firmly attached to the windshield of the car. This work focuses on the classification of four road surfaces (asphalt, dirt, concrete, and sand), though larger target sets were also considered. The most accurate method involved a MATLAB feature extraction package with a back-propagation neural network, yielding an overall accuracy of 97%. Lessons learned from this wide exploration of options may extend to other related classification problems.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.