{"title":"一种结合群轨迹规划的海空混合协同方法","authors":"Salima Bella, A. Belbachir, Ghalem Belalem","doi":"10.1515/pjbr-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract This work addresses the issue of ocean monitoring and clean-up of polluted zones, as well as the notion of trajectory planning and fault tolerance for semi-autonomous unmanned vehicles. A hybrid approach for unmanned aerial vehicles (UAVs) is introduced to monitor the ocean region and cooperate with swarm of unmanned surface vehicles (USVs) to clean dirty zones. The paper proposes two solutions that apply to trajectory planning from the base of life to the dirty zone for swarm USVs. The first solution is performed by a modified Genetic Algorithm (GA), and the second uses a modified Ant Algorithm (AA). The proposed solutions were both implemented in the simulation with different scenarios for the dirty zone. This approach detects and reduces the pollution level in ocean zones while taking into account the problem of fault tolerance related to unmanned cleaning vehicles.","PeriodicalId":90037,"journal":{"name":"Paladyn : journal of behavioral robotics","volume":"115 6 1","pages":"118 - 139"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A hybrid air-sea cooperative approach combined with a swarm trajectory planning method\",\"authors\":\"Salima Bella, A. Belbachir, Ghalem Belalem\",\"doi\":\"10.1515/pjbr-2020-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work addresses the issue of ocean monitoring and clean-up of polluted zones, as well as the notion of trajectory planning and fault tolerance for semi-autonomous unmanned vehicles. A hybrid approach for unmanned aerial vehicles (UAVs) is introduced to monitor the ocean region and cooperate with swarm of unmanned surface vehicles (USVs) to clean dirty zones. The paper proposes two solutions that apply to trajectory planning from the base of life to the dirty zone for swarm USVs. The first solution is performed by a modified Genetic Algorithm (GA), and the second uses a modified Ant Algorithm (AA). The proposed solutions were both implemented in the simulation with different scenarios for the dirty zone. This approach detects and reduces the pollution level in ocean zones while taking into account the problem of fault tolerance related to unmanned cleaning vehicles.\",\"PeriodicalId\":90037,\"journal\":{\"name\":\"Paladyn : journal of behavioral robotics\",\"volume\":\"115 6 1\",\"pages\":\"118 - 139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paladyn : journal of behavioral robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pjbr-2020-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paladyn : journal of behavioral robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pjbr-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid air-sea cooperative approach combined with a swarm trajectory planning method
Abstract This work addresses the issue of ocean monitoring and clean-up of polluted zones, as well as the notion of trajectory planning and fault tolerance for semi-autonomous unmanned vehicles. A hybrid approach for unmanned aerial vehicles (UAVs) is introduced to monitor the ocean region and cooperate with swarm of unmanned surface vehicles (USVs) to clean dirty zones. The paper proposes two solutions that apply to trajectory planning from the base of life to the dirty zone for swarm USVs. The first solution is performed by a modified Genetic Algorithm (GA), and the second uses a modified Ant Algorithm (AA). The proposed solutions were both implemented in the simulation with different scenarios for the dirty zone. This approach detects and reduces the pollution level in ocean zones while taking into account the problem of fault tolerance related to unmanned cleaning vehicles.