AC0与TC0之间电路的紧密相关界

Vinayak Kumar
{"title":"AC0与TC0之间电路的紧密相关界","authors":"Vinayak Kumar","doi":"10.48550/arXiv.2304.02770","DOIUrl":null,"url":null,"abstract":"We initiate the study of generalized AC0 circuits comprised of negations and arbitrary unbounded fan-in gates that only need to be constant over inputs of Hamming weight $\\ge k$, which we denote GC0$(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ (output $1$ iff $\\ge k$ bits are 1) and $k$-$AND$ (output $0$ iff $\\ge k$ bits are 0), and thus can be seen as an interpolation between AC0 and TC0. We establish a tight multi-switching lemma for GC0$(k)$ circuits, which bounds the probability that several depth-2 GC0$(k)$ circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-$d$ size-$s$ AC0 circuits lifts to depth-$d$ size-$s^{.99}$ GC0$(.01\\log s)$ circuits with no loss in parameters (other than hidden constants). Our result has the following applications: 1.Size-$2^{\\Omega(n^{1/d})}$ depth-$d$ GC0$(\\Omega(n^{1/d}))$ circuits do not correlate with parity (extending a result of H{\\aa}stad (SICOMP, 2014)). 2. Size-$n^{\\Omega(\\log n)}$ GC0$(\\Omega(\\log^2 n))$ circuits with $n^{.249}$ arbitrary threshold gates or $n^{.499}$ arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). 3. There is a seed length $O((\\log m)^{d-1}\\log(m/\\varepsilon)\\log\\log(m))$ pseudorandom generator against size-$m$ depth-$d$ GC0$(\\log m)$ circuits, matching the AC0 lower bound of H{\\aa}stad stad up to a $\\log\\log m$ factor (extending a result of Lyu (CCC, 2022)). 4. Size-$m$ GC0$(\\log m)$ circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"34 7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Correlation Bounds for Circuits Between AC0 and TC0\",\"authors\":\"Vinayak Kumar\",\"doi\":\"10.48550/arXiv.2304.02770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of generalized AC0 circuits comprised of negations and arbitrary unbounded fan-in gates that only need to be constant over inputs of Hamming weight $\\\\ge k$, which we denote GC0$(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ (output $1$ iff $\\\\ge k$ bits are 1) and $k$-$AND$ (output $0$ iff $\\\\ge k$ bits are 0), and thus can be seen as an interpolation between AC0 and TC0. We establish a tight multi-switching lemma for GC0$(k)$ circuits, which bounds the probability that several depth-2 GC0$(k)$ circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-$d$ size-$s$ AC0 circuits lifts to depth-$d$ size-$s^{.99}$ GC0$(.01\\\\log s)$ circuits with no loss in parameters (other than hidden constants). Our result has the following applications: 1.Size-$2^{\\\\Omega(n^{1/d})}$ depth-$d$ GC0$(\\\\Omega(n^{1/d}))$ circuits do not correlate with parity (extending a result of H{\\\\aa}stad (SICOMP, 2014)). 2. Size-$n^{\\\\Omega(\\\\log n)}$ GC0$(\\\\Omega(\\\\log^2 n))$ circuits with $n^{.249}$ arbitrary threshold gates or $n^{.499}$ arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). 3. There is a seed length $O((\\\\log m)^{d-1}\\\\log(m/\\\\varepsilon)\\\\log\\\\log(m))$ pseudorandom generator against size-$m$ depth-$d$ GC0$(\\\\log m)$ circuits, matching the AC0 lower bound of H{\\\\aa}stad stad up to a $\\\\log\\\\log m$ factor (extending a result of Lyu (CCC, 2022)). 4. Size-$m$ GC0$(\\\\log m)$ circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"34 7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.02770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.02770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开始研究由负和任意无界扇入门组成的广义AC0电路,这些电路只需要在汉明权值$\ge k$(我们记为GC0 $(k)$)的输入上恒定。该类的门集包括有偏ltf,如$k$ - $OR$(输出$1$ iff $\ge k$位为1)和$k$ - $AND$(输出$0$ iff $\ge k$位为0),因此可以看作是AC0和TC0之间的插值。我们建立了GC0 $(k)$电路的紧密多开关引理,该引理限定了多个深度为2的GC0 $(k)$电路在随机约束下不同时简化的概率。我们还建立了一个新的深度缩减引理,这样与我们的多开关引理相结合,我们可以展示从深度- $d$尺寸- $s$ AC0电路提升到深度- $d$尺寸- $s^{.99}$ GC0 $(.01\log s)$电路的多开关引理得到的许多结果,而参数没有损失(除了隐藏常数)。我们的结果有以下应用:1。尺寸- $2^{\Omega(n^{1/d})}$深度- $d$ GC0 $(\Omega(n^{1/d}))$电路与奇偶性无关(扩展H {\aa} stad的结果(SICOMP, 2014))。2. 尺寸- $n^{\Omega(\log n)}$ GC0 $(\Omega(\log^2 n))$具有$n^{.249}$任意阈值门或$n^{.499}$任意对称门的电路与显式函数表现出指数小的相关性(扩展Tan和Servedio (RANDOM, 2019)的结果)。3.有一个种子长度$O((\log m)^{d-1}\log(m/\varepsilon)\log\log(m))$伪随机生成器,大小- $m$深度- $d$ GC0 $(\log m)$电路,匹配H {\aa} stad stad的AC0下界到$\log\log m$因子(扩展Lyu (CCC, 2022)的结果)。4. 尺寸- $m$ GC0 $(\log m)$电路具有指数级小的傅立叶尾(扩展Tal (CCC, 2017)的结果)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Correlation Bounds for Circuits Between AC0 and TC0
We initiate the study of generalized AC0 circuits comprised of negations and arbitrary unbounded fan-in gates that only need to be constant over inputs of Hamming weight $\ge k$, which we denote GC0$(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ (output $1$ iff $\ge k$ bits are 1) and $k$-$AND$ (output $0$ iff $\ge k$ bits are 0), and thus can be seen as an interpolation between AC0 and TC0. We establish a tight multi-switching lemma for GC0$(k)$ circuits, which bounds the probability that several depth-2 GC0$(k)$ circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-$d$ size-$s$ AC0 circuits lifts to depth-$d$ size-$s^{.99}$ GC0$(.01\log s)$ circuits with no loss in parameters (other than hidden constants). Our result has the following applications: 1.Size-$2^{\Omega(n^{1/d})}$ depth-$d$ GC0$(\Omega(n^{1/d}))$ circuits do not correlate with parity (extending a result of H{\aa}stad (SICOMP, 2014)). 2. Size-$n^{\Omega(\log n)}$ GC0$(\Omega(\log^2 n))$ circuits with $n^{.249}$ arbitrary threshold gates or $n^{.499}$ arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). 3. There is a seed length $O((\log m)^{d-1}\log(m/\varepsilon)\log\log(m))$ pseudorandom generator against size-$m$ depth-$d$ GC0$(\log m)$ circuits, matching the AC0 lower bound of H{\aa}stad stad up to a $\log\log m$ factor (extending a result of Lyu (CCC, 2022)). 4. Size-$m$ GC0$(\log m)$ circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信