I. L. Simanullang, Katsuki Fukuhara, Keisuke Morita, Y. Fukaya, H. Ho, S. Nagasumi, K. Iigaki, E. Ishitsuka, N. Fujimoto
{"title":"高温气冷堆ORIGEN2文库的制备方法","authors":"I. L. Simanullang, Katsuki Fukuhara, Keisuke Morita, Y. Fukaya, H. Ho, S. Nagasumi, K. Iigaki, E. Ishitsuka, N. Fujimoto","doi":"10.1115/icone29-90802","DOIUrl":null,"url":null,"abstract":"\n The ORIGEN2 code has been used for fuel depletion calculations of many kinds of reactor fuels but there is no library for high temperature gas cooled reactors (HTGRs). A set of the ORIGEN2 library for the HTGR has been established to evaluate the fuel burnup characteristics. In this study, the ORIGEN2 library was prepared for the high temperature engineering test reactor (HTTR). The HTTR is the first Japanese prismatic type HTGR. The burnup dependent neutron spectrum is necessary for generating the ORIGEN2 library. A pin-cell burnup calculation was conducted to obtain the burnup dependent neutron spectrum in the fuel compact of HTTR. Then, the ORIGEN2 library was generated based on the neutron spectrum of the pin cell model. The calculation results that were calculated by the ORIGEN2 code was validated by comparison with a detailed calculation with use of the MVP-BURN code. This code-to-code method was used to validate the ORIGEN2 code calculation because of no assay data of HTTR spent fuels. One of the isotopes that evaluated was 239Pu. The calculation results showed that the amount of 239Pu calculated by ORIGEN2 code was higher about 35% than that of calculated by the MVP-BURN code. It showed that the ORIGEN2 library using the neutron spectrum of a pin-cell burnup model was not enough for evaluating burnup characteristics of the HTTR. Therefore, an improvement was performed to evaluate the ORIGEN2 library. In this study, the ORIGEN2 library was generated based on the neutron spectrum of a core burnup calculation. The calculation results showed that the ORIGEN2 code and the MVP-BURN code was in a good agreement. The maximum difference of 239Pu amount between the ORIGEN2 and MVP-BURN became 2.4%.","PeriodicalId":36762,"journal":{"name":"Journal of Nuclear Fuel Cycle and Waste Technology","volume":"66 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation Method of ORIGEN2 Library for High Temperature Gas-Cooled Reactors\",\"authors\":\"I. L. Simanullang, Katsuki Fukuhara, Keisuke Morita, Y. Fukaya, H. Ho, S. Nagasumi, K. Iigaki, E. Ishitsuka, N. Fujimoto\",\"doi\":\"10.1115/icone29-90802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The ORIGEN2 code has been used for fuel depletion calculations of many kinds of reactor fuels but there is no library for high temperature gas cooled reactors (HTGRs). A set of the ORIGEN2 library for the HTGR has been established to evaluate the fuel burnup characteristics. In this study, the ORIGEN2 library was prepared for the high temperature engineering test reactor (HTTR). The HTTR is the first Japanese prismatic type HTGR. The burnup dependent neutron spectrum is necessary for generating the ORIGEN2 library. A pin-cell burnup calculation was conducted to obtain the burnup dependent neutron spectrum in the fuel compact of HTTR. Then, the ORIGEN2 library was generated based on the neutron spectrum of the pin cell model. The calculation results that were calculated by the ORIGEN2 code was validated by comparison with a detailed calculation with use of the MVP-BURN code. This code-to-code method was used to validate the ORIGEN2 code calculation because of no assay data of HTTR spent fuels. One of the isotopes that evaluated was 239Pu. The calculation results showed that the amount of 239Pu calculated by ORIGEN2 code was higher about 35% than that of calculated by the MVP-BURN code. It showed that the ORIGEN2 library using the neutron spectrum of a pin-cell burnup model was not enough for evaluating burnup characteristics of the HTTR. Therefore, an improvement was performed to evaluate the ORIGEN2 library. In this study, the ORIGEN2 library was generated based on the neutron spectrum of a core burnup calculation. The calculation results showed that the ORIGEN2 code and the MVP-BURN code was in a good agreement. The maximum difference of 239Pu amount between the ORIGEN2 and MVP-BURN became 2.4%.\",\"PeriodicalId\":36762,\"journal\":{\"name\":\"Journal of Nuclear Fuel Cycle and Waste Technology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Fuel Cycle and Waste Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-90802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Fuel Cycle and Waste Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-90802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Preparation Method of ORIGEN2 Library for High Temperature Gas-Cooled Reactors
The ORIGEN2 code has been used for fuel depletion calculations of many kinds of reactor fuels but there is no library for high temperature gas cooled reactors (HTGRs). A set of the ORIGEN2 library for the HTGR has been established to evaluate the fuel burnup characteristics. In this study, the ORIGEN2 library was prepared for the high temperature engineering test reactor (HTTR). The HTTR is the first Japanese prismatic type HTGR. The burnup dependent neutron spectrum is necessary for generating the ORIGEN2 library. A pin-cell burnup calculation was conducted to obtain the burnup dependent neutron spectrum in the fuel compact of HTTR. Then, the ORIGEN2 library was generated based on the neutron spectrum of the pin cell model. The calculation results that were calculated by the ORIGEN2 code was validated by comparison with a detailed calculation with use of the MVP-BURN code. This code-to-code method was used to validate the ORIGEN2 code calculation because of no assay data of HTTR spent fuels. One of the isotopes that evaluated was 239Pu. The calculation results showed that the amount of 239Pu calculated by ORIGEN2 code was higher about 35% than that of calculated by the MVP-BURN code. It showed that the ORIGEN2 library using the neutron spectrum of a pin-cell burnup model was not enough for evaluating burnup characteristics of the HTTR. Therefore, an improvement was performed to evaluate the ORIGEN2 library. In this study, the ORIGEN2 library was generated based on the neutron spectrum of a core burnup calculation. The calculation results showed that the ORIGEN2 code and the MVP-BURN code was in a good agreement. The maximum difference of 239Pu amount between the ORIGEN2 and MVP-BURN became 2.4%.