所有(单调)布尔函数的临界复杂度和单调图的性质

Q4 Mathematics
Ingo Wegner
{"title":"所有(单调)布尔函数的临界复杂度和单调图的性质","authors":"Ingo Wegner","doi":"10.1016/S0019-9958(85)80036-X","DOIUrl":null,"url":null,"abstract":"<div><p>CREW-PRAM's are a powerful model of parallel computers. Lower bounds for this model are rather general. Cook, Dwork, and Reischuk upper and lower time bounds for parallel random access machines without simultaneous writes, <em>SIAM J. Comput.</em> (in press) proved that the CREW-PRAM complexity of Boolean functions is bounded by log<em><sub>b</sub> c</em>(<em>f</em>), where <em>b</em> ≈ 4.79 and <em>c</em>(<em>f</em>) is the critical complexity of <em>f</em>. This lower bound is often even tight. For a class of functions <em>F</em> the critical complexity <em>c</em>(<em>F</em>), the minimum of all <em>c</em>(<em>f</em>) where <em>f</em> ∈ <em>F</em>, is the best general lower bound on the critical complexity of all <em>f</em> ∈ <em>F</em>. We determine the critical complexity of the set of all nondegenerate Boolean functions and all monotone nondegenerate Boolean functions up to a small additive term. And we compute exactly the critical complexity of the class of all monotone graph properties, proving partially a conjecture of <span>Turán (1984)</span>.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"67 1","pages":"Pages 212-222"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80036-X","citationCount":"28","resultStr":"{\"title\":\"The critical complexity of all (monotone) boolean functions and monotone graph properties\",\"authors\":\"Ingo Wegner\",\"doi\":\"10.1016/S0019-9958(85)80036-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CREW-PRAM's are a powerful model of parallel computers. Lower bounds for this model are rather general. Cook, Dwork, and Reischuk upper and lower time bounds for parallel random access machines without simultaneous writes, <em>SIAM J. Comput.</em> (in press) proved that the CREW-PRAM complexity of Boolean functions is bounded by log<em><sub>b</sub> c</em>(<em>f</em>), where <em>b</em> ≈ 4.79 and <em>c</em>(<em>f</em>) is the critical complexity of <em>f</em>. This lower bound is often even tight. For a class of functions <em>F</em> the critical complexity <em>c</em>(<em>F</em>), the minimum of all <em>c</em>(<em>f</em>) where <em>f</em> ∈ <em>F</em>, is the best general lower bound on the critical complexity of all <em>f</em> ∈ <em>F</em>. We determine the critical complexity of the set of all nondegenerate Boolean functions and all monotone nondegenerate Boolean functions up to a small additive term. And we compute exactly the critical complexity of the class of all monotone graph properties, proving partially a conjecture of <span>Turán (1984)</span>.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":\"67 1\",\"pages\":\"Pages 212-222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80036-X\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001999588580036X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001999588580036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 28

摘要

CREW-PRAM是一种强大的并行计算机模型。这个模型的下界很一般。Cook, Dwork和Reischuk,无同步写入并行随机存取机的上和下时间界限,SIAM J. computer。(in press)证明了布尔函数的CREW-PRAM复杂度以logb c(f)为界,其中b≈4.79,c(f)是f的临界复杂度。这个下界通常是紧的。对于一类函数F,当F∈F时,所有c(F)的最小值c(F)是所有F∈F的临界复杂度的最佳一般下界。我们确定了所有非退化布尔函数和所有单调非退化布尔函数的集合的临界复杂度,直至一个小的加性项。我们精确地计算了所有单调图性质类的临界复杂度,部分地证明了Turán(1984)的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The critical complexity of all (monotone) boolean functions and monotone graph properties

CREW-PRAM's are a powerful model of parallel computers. Lower bounds for this model are rather general. Cook, Dwork, and Reischuk upper and lower time bounds for parallel random access machines without simultaneous writes, SIAM J. Comput. (in press) proved that the CREW-PRAM complexity of Boolean functions is bounded by logb c(f), where b ≈ 4.79 and c(f) is the critical complexity of f. This lower bound is often even tight. For a class of functions F the critical complexity c(F), the minimum of all c(f) where fF, is the best general lower bound on the critical complexity of all fF. We determine the critical complexity of the set of all nondegenerate Boolean functions and all monotone nondegenerate Boolean functions up to a small additive term. And we compute exactly the critical complexity of the class of all monotone graph properties, proving partially a conjecture of Turán (1984).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信