{"title":"偶循环抑制下关系网络创造性认知的神经动力学模型","authors":"V. Tsukerman","doi":"10.18500/0869-6632-2022-30-3-331-357","DOIUrl":null,"url":null,"abstract":"The purpose of this work is study of the neurodynamic foundations of the creative activity of the brain. Modern AI systems using deep neural network training require large amounts of input data, high computational costs and long training times. On the contrary, the brain can learn from small datasets in no time and, crucially, it is fundamentally creative. Methods. The study was carried out through computational experiments with neural networks containing 5 and 7 oscillatory layers (circuits) trained to represent abstract concepts of a certain class of animals. The scheme of neural networks with even cyclic inhibition (ECI networks) contains only bilateral inhibitory connections and consists of two subnets: a reference noncoding network, which is an analogue of the default brain mode neural network, and the main information network that receives time sequences of environmental signals and contextual inputs. After training, the reading of the population phase codes was performed with a simple linear decoder. Results. Conceptual learning of the network leads to the generation of a number of spatial abstract images that are distinguished by the most pronounced features of the relevant line of animals. In computational experiments, a wide set of isomorphic representations of concepts was obtained through: a) transformations of image spaces in a wide range of time scales of the training input signal flow, b) internal regulation of the time scales of mental representations of concepts, c) confirmation on the model of the dependence of psychological proximity of concepts on semantic distance; d) calling from memory (decoding) distributed groups of neurons of animal concepts, which the network has not been trained in. Conclusion. This paper shows for the first time how, using a small set of event input data (a sequence of 4 CCW and 2 CW signals) and very limited computational resources, ECI networks exhibit creative cognitions based on relational relationships, conceptual learning and generalization of knowledge.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurodynamic model for creative cognition of relational networks with even cyclic inhibition\",\"authors\":\"V. Tsukerman\",\"doi\":\"10.18500/0869-6632-2022-30-3-331-357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is study of the neurodynamic foundations of the creative activity of the brain. Modern AI systems using deep neural network training require large amounts of input data, high computational costs and long training times. On the contrary, the brain can learn from small datasets in no time and, crucially, it is fundamentally creative. Methods. The study was carried out through computational experiments with neural networks containing 5 and 7 oscillatory layers (circuits) trained to represent abstract concepts of a certain class of animals. The scheme of neural networks with even cyclic inhibition (ECI networks) contains only bilateral inhibitory connections and consists of two subnets: a reference noncoding network, which is an analogue of the default brain mode neural network, and the main information network that receives time sequences of environmental signals and contextual inputs. After training, the reading of the population phase codes was performed with a simple linear decoder. Results. Conceptual learning of the network leads to the generation of a number of spatial abstract images that are distinguished by the most pronounced features of the relevant line of animals. In computational experiments, a wide set of isomorphic representations of concepts was obtained through: a) transformations of image spaces in a wide range of time scales of the training input signal flow, b) internal regulation of the time scales of mental representations of concepts, c) confirmation on the model of the dependence of psychological proximity of concepts on semantic distance; d) calling from memory (decoding) distributed groups of neurons of animal concepts, which the network has not been trained in. Conclusion. This paper shows for the first time how, using a small set of event input data (a sequence of 4 CCW and 2 CW signals) and very limited computational resources, ECI networks exhibit creative cognitions based on relational relationships, conceptual learning and generalization of knowledge.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-2022-30-3-331-357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-3-331-357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Neurodynamic model for creative cognition of relational networks with even cyclic inhibition
The purpose of this work is study of the neurodynamic foundations of the creative activity of the brain. Modern AI systems using deep neural network training require large amounts of input data, high computational costs and long training times. On the contrary, the brain can learn from small datasets in no time and, crucially, it is fundamentally creative. Methods. The study was carried out through computational experiments with neural networks containing 5 and 7 oscillatory layers (circuits) trained to represent abstract concepts of a certain class of animals. The scheme of neural networks with even cyclic inhibition (ECI networks) contains only bilateral inhibitory connections and consists of two subnets: a reference noncoding network, which is an analogue of the default brain mode neural network, and the main information network that receives time sequences of environmental signals and contextual inputs. After training, the reading of the population phase codes was performed with a simple linear decoder. Results. Conceptual learning of the network leads to the generation of a number of spatial abstract images that are distinguished by the most pronounced features of the relevant line of animals. In computational experiments, a wide set of isomorphic representations of concepts was obtained through: a) transformations of image spaces in a wide range of time scales of the training input signal flow, b) internal regulation of the time scales of mental representations of concepts, c) confirmation on the model of the dependence of psychological proximity of concepts on semantic distance; d) calling from memory (decoding) distributed groups of neurons of animal concepts, which the network has not been trained in. Conclusion. This paper shows for the first time how, using a small set of event input data (a sequence of 4 CCW and 2 CW signals) and very limited computational resources, ECI networks exhibit creative cognitions based on relational relationships, conceptual learning and generalization of knowledge.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.