异构集群上并行dbms的资源拼贴

Jiexing Li, J. Naughton, Rimma V. Nehme
{"title":"异构集群上并行dbms的资源拼贴","authors":"Jiexing Li, J. Naughton, Rimma V. Nehme","doi":"10.1145/2949741.2949752","DOIUrl":null,"url":null,"abstract":"Running parallel database systems in an environment with heterogeneous resources has become increasingly common, due to cluster evolution and increasing interest in moving applications into public clouds or shared infrastructures. For database systems running in a heterogeneous cluster, the default uniform data partitioning strategy may overload some of the slow machines while at the same time it may underutilize the more powerful machines. Since the processing time of a parallel query is determined by the slowest machine, such an allocation strategy may result in a significant query performance degradation.\n We take a first step to address this problem by introducing a technique we call resource bricolage that improves database performance in heterogeneous environments. Our approach quantifies the performance differences among machines with various resources as they process workloads with diverse resource requirements. We formalize the problem of minimizing workload execution time and view it as an optimization problem, and then we employ linear programming to obtain a recommended data partitioning scheme. We verify the effectiveness of our technique with an extensive experimental study on a commercial database system.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"16 1","pages":"42-49"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Bricolage for Parallel DBMSs on Heterogeneous Clusters\",\"authors\":\"Jiexing Li, J. Naughton, Rimma V. Nehme\",\"doi\":\"10.1145/2949741.2949752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Running parallel database systems in an environment with heterogeneous resources has become increasingly common, due to cluster evolution and increasing interest in moving applications into public clouds or shared infrastructures. For database systems running in a heterogeneous cluster, the default uniform data partitioning strategy may overload some of the slow machines while at the same time it may underutilize the more powerful machines. Since the processing time of a parallel query is determined by the slowest machine, such an allocation strategy may result in a significant query performance degradation.\\n We take a first step to address this problem by introducing a technique we call resource bricolage that improves database performance in heterogeneous environments. Our approach quantifies the performance differences among machines with various resources as they process workloads with diverse resource requirements. We formalize the problem of minimizing workload execution time and view it as an optimization problem, and then we employ linear programming to obtain a recommended data partitioning scheme. We verify the effectiveness of our technique with an extensive experimental study on a commercial database system.\",\"PeriodicalId\":21740,\"journal\":{\"name\":\"SIGMOD Rec.\",\"volume\":\"16 1\",\"pages\":\"42-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGMOD Rec.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2949741.2949752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2949741.2949752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于集群的发展以及将应用程序迁移到公共云或共享基础设施的兴趣日益增加,在具有异构资源的环境中运行并行数据库系统已经变得越来越普遍。对于在异构集群中运行的数据库系统,默认的统一数据分区策略可能会使一些速度较慢的机器过载,同时可能会使功能较强大的机器利用率不足。由于并行查询的处理时间是由最慢的机器决定的,所以这种分配策略可能会导致查询性能的显著下降。为了解决这个问题,我们首先引入了一种称为资源拼装的技术,这种技术可以提高异构环境中的数据库性能。我们的方法量化了具有不同资源的机器在处理具有不同资源需求的工作负载时的性能差异。我们将最小化工作负载执行时间的问题形式化,并将其视为一个优化问题,然后我们使用线性规划来获得推荐的数据分区方案。我们在一个商业数据库系统上进行了广泛的实验研究,验证了我们技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Bricolage for Parallel DBMSs on Heterogeneous Clusters
Running parallel database systems in an environment with heterogeneous resources has become increasingly common, due to cluster evolution and increasing interest in moving applications into public clouds or shared infrastructures. For database systems running in a heterogeneous cluster, the default uniform data partitioning strategy may overload some of the slow machines while at the same time it may underutilize the more powerful machines. Since the processing time of a parallel query is determined by the slowest machine, such an allocation strategy may result in a significant query performance degradation. We take a first step to address this problem by introducing a technique we call resource bricolage that improves database performance in heterogeneous environments. Our approach quantifies the performance differences among machines with various resources as they process workloads with diverse resource requirements. We formalize the problem of minimizing workload execution time and view it as an optimization problem, and then we employ linear programming to obtain a recommended data partitioning scheme. We verify the effectiveness of our technique with an extensive experimental study on a commercial database system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信