Xupeng He, R. Santoso, M. AlSinan, H. Kwak, H. Hoteit
{"title":"利用深度神经网络从高分辨率离散裂缝模型构建双重孔隙度模型","authors":"Xupeng He, R. Santoso, M. AlSinan, H. Kwak, H. Hoteit","doi":"10.2118/203901-ms","DOIUrl":null,"url":null,"abstract":"\n Detailed geological description of fractured reservoirs is typically characterized by the discrete-fracture model (DFM), in which the rock matrix and fractures are explicitly represented in the form of unstructured grids. Its high computation cost makes it infeasible for field-scale applications. Traditional flow-based and static-based methods used to upscale detailed geological DFM to reservoir simulation model suffer from, to some extent, high computation cost and low accuracy, respectively. In this paper, we present a novel deep learning-based upscaling method as an alternative to traditional methods.\n This work aims to build an image-to-value model based on convolutional neural network to model the nonlinear mapping between the high-resolution image of detailed DFM as input and the upscaled reservoir simulation model as output. The reservoir simulation model (herein refers to the dual-porosity model) includes the predicted fracture-fracture transmissibility linking two adjacent grid blocks and fracture-matrix transmissibility within each coarse block. The proposed upscaling workflow comprises the train-validation samples generation, convolutional neural network training-validating process, and model evaluation. We apply a two-point flux approximation (TPFA) scheme based on embedded discrete-fracture model (EDFM) to generate the datasets. We perform trial-error analysis on the coupling training-validating process to update the ratio of train-validation samples, optimize the learning rate and the network architecture. This process is applied until the trained model obtains an accuracy above 90 % for both train-validation samples.\n We then demonstrate its performance with the two-phase reference solutions obtained from the fine model in terms of water saturation profile and oil recovery versus PVI. Results show that the DL-based approach provides a good match with the reference solutions for both water saturation distribution and oil recovery curve. This work manifests the value of the DL-based method for the upscaling of detailed DFM to the dual-porosity model and can be extended to construct generalized dual-porosity, dual-permeability models or include more complex physics, such as capillary and gravity effects.","PeriodicalId":11146,"journal":{"name":"Day 1 Tue, October 26, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Constructing Dual-Porosity Models from High-Resolution Discrete-Fracture Models Using Deep Neural Networks\",\"authors\":\"Xupeng He, R. Santoso, M. AlSinan, H. Kwak, H. Hoteit\",\"doi\":\"10.2118/203901-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Detailed geological description of fractured reservoirs is typically characterized by the discrete-fracture model (DFM), in which the rock matrix and fractures are explicitly represented in the form of unstructured grids. Its high computation cost makes it infeasible for field-scale applications. Traditional flow-based and static-based methods used to upscale detailed geological DFM to reservoir simulation model suffer from, to some extent, high computation cost and low accuracy, respectively. In this paper, we present a novel deep learning-based upscaling method as an alternative to traditional methods.\\n This work aims to build an image-to-value model based on convolutional neural network to model the nonlinear mapping between the high-resolution image of detailed DFM as input and the upscaled reservoir simulation model as output. The reservoir simulation model (herein refers to the dual-porosity model) includes the predicted fracture-fracture transmissibility linking two adjacent grid blocks and fracture-matrix transmissibility within each coarse block. The proposed upscaling workflow comprises the train-validation samples generation, convolutional neural network training-validating process, and model evaluation. We apply a two-point flux approximation (TPFA) scheme based on embedded discrete-fracture model (EDFM) to generate the datasets. We perform trial-error analysis on the coupling training-validating process to update the ratio of train-validation samples, optimize the learning rate and the network architecture. This process is applied until the trained model obtains an accuracy above 90 % for both train-validation samples.\\n We then demonstrate its performance with the two-phase reference solutions obtained from the fine model in terms of water saturation profile and oil recovery versus PVI. Results show that the DL-based approach provides a good match with the reference solutions for both water saturation distribution and oil recovery curve. This work manifests the value of the DL-based method for the upscaling of detailed DFM to the dual-porosity model and can be extended to construct generalized dual-porosity, dual-permeability models or include more complex physics, such as capillary and gravity effects.\",\"PeriodicalId\":11146,\"journal\":{\"name\":\"Day 1 Tue, October 26, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, October 26, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/203901-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 26, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/203901-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructing Dual-Porosity Models from High-Resolution Discrete-Fracture Models Using Deep Neural Networks
Detailed geological description of fractured reservoirs is typically characterized by the discrete-fracture model (DFM), in which the rock matrix and fractures are explicitly represented in the form of unstructured grids. Its high computation cost makes it infeasible for field-scale applications. Traditional flow-based and static-based methods used to upscale detailed geological DFM to reservoir simulation model suffer from, to some extent, high computation cost and low accuracy, respectively. In this paper, we present a novel deep learning-based upscaling method as an alternative to traditional methods.
This work aims to build an image-to-value model based on convolutional neural network to model the nonlinear mapping between the high-resolution image of detailed DFM as input and the upscaled reservoir simulation model as output. The reservoir simulation model (herein refers to the dual-porosity model) includes the predicted fracture-fracture transmissibility linking two adjacent grid blocks and fracture-matrix transmissibility within each coarse block. The proposed upscaling workflow comprises the train-validation samples generation, convolutional neural network training-validating process, and model evaluation. We apply a two-point flux approximation (TPFA) scheme based on embedded discrete-fracture model (EDFM) to generate the datasets. We perform trial-error analysis on the coupling training-validating process to update the ratio of train-validation samples, optimize the learning rate and the network architecture. This process is applied until the trained model obtains an accuracy above 90 % for both train-validation samples.
We then demonstrate its performance with the two-phase reference solutions obtained from the fine model in terms of water saturation profile and oil recovery versus PVI. Results show that the DL-based approach provides a good match with the reference solutions for both water saturation distribution and oil recovery curve. This work manifests the value of the DL-based method for the upscaling of detailed DFM to the dual-porosity model and can be extended to construct generalized dual-porosity, dual-permeability models or include more complex physics, such as capillary and gravity effects.