超越协同过滤:列表推荐问题

Oren Sar Shalom, Noam Koenigstein, U. Paquet, Hastagiri P. Vanchinathan
{"title":"超越协同过滤:列表推荐问题","authors":"Oren Sar Shalom, Noam Koenigstein, U. Paquet, Hastagiri P. Vanchinathan","doi":"10.1145/2872427.2883057","DOIUrl":null,"url":null,"abstract":"Most Collaborative Filtering (CF) algorithms are optimized using a dataset of isolated user-item tuples. However, in commercial applications recommended items are usually served as an ordered list of several items and not as isolated items. In this setting, inter-item interactions have an effect on the list's Click-Through Rate (CTR) that is unaccounted for using traditional CF approaches. Most CF approaches also ignore additional important factors like click propensity variation, item fatigue, etc. In this work, we introduce the list recommendation problem. We present useful insights gleaned from user behavior and consumption patterns from a large scale real world recommender system. We then propose a novel two-layered framework that builds upon existing CF algorithms to optimize a list's click probability. Our approach accounts for inter-item interactions as well as additional information such as item fatigue, trendiness patterns, contextual information etc. Finally, we evaluate our approach using a novel adaptation of Inverse Propensity Scoring (IPS) which facilitates off-policy estimation of our method's CTR and showcases its effectiveness in real-world settings.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Beyond Collaborative Filtering: The List Recommendation Problem\",\"authors\":\"Oren Sar Shalom, Noam Koenigstein, U. Paquet, Hastagiri P. Vanchinathan\",\"doi\":\"10.1145/2872427.2883057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most Collaborative Filtering (CF) algorithms are optimized using a dataset of isolated user-item tuples. However, in commercial applications recommended items are usually served as an ordered list of several items and not as isolated items. In this setting, inter-item interactions have an effect on the list's Click-Through Rate (CTR) that is unaccounted for using traditional CF approaches. Most CF approaches also ignore additional important factors like click propensity variation, item fatigue, etc. In this work, we introduce the list recommendation problem. We present useful insights gleaned from user behavior and consumption patterns from a large scale real world recommender system. We then propose a novel two-layered framework that builds upon existing CF algorithms to optimize a list's click probability. Our approach accounts for inter-item interactions as well as additional information such as item fatigue, trendiness patterns, contextual information etc. Finally, we evaluate our approach using a novel adaptation of Inverse Propensity Scoring (IPS) which facilitates off-policy estimation of our method's CTR and showcases its effectiveness in real-world settings.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2883057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

大多数协同过滤(CF)算法都是使用孤立的用户项元组数据集进行优化的。然而,在商业应用程序中,推荐项通常作为若干项的有序列表提供,而不是作为孤立的项。在这种情况下,项目间的互动会对列表的点击率(CTR)产生影响,而使用传统的CF方法是无法考虑到这一点的。大多数CF方法也忽略了其他重要因素,如点击倾向变化,道具疲劳等。在这项工作中,我们引入了列表推荐问题。我们从一个大规模的真实世界的推荐系统中收集了用户行为和消费模式的有用见解。然后,我们提出了一个新的双层框架,该框架基于现有的CF算法来优化列表的点击概率。我们的方法考虑了项目间的互动以及额外的信息,如项目疲劳、流行模式、上下文信息等。最后,我们使用一种新的逆倾向评分(IPS)来评估我们的方法,该方法有助于对我们方法的CTR进行非策略估计,并展示了其在现实环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond Collaborative Filtering: The List Recommendation Problem
Most Collaborative Filtering (CF) algorithms are optimized using a dataset of isolated user-item tuples. However, in commercial applications recommended items are usually served as an ordered list of several items and not as isolated items. In this setting, inter-item interactions have an effect on the list's Click-Through Rate (CTR) that is unaccounted for using traditional CF approaches. Most CF approaches also ignore additional important factors like click propensity variation, item fatigue, etc. In this work, we introduce the list recommendation problem. We present useful insights gleaned from user behavior and consumption patterns from a large scale real world recommender system. We then propose a novel two-layered framework that builds upon existing CF algorithms to optimize a list's click probability. Our approach accounts for inter-item interactions as well as additional information such as item fatigue, trendiness patterns, contextual information etc. Finally, we evaluate our approach using a novel adaptation of Inverse Propensity Scoring (IPS) which facilitates off-policy estimation of our method's CTR and showcases its effectiveness in real-world settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信