(1+1)和(2+1)维多分量Heisenberg超磁体模型

Mengyang Gao, Zhaowen Yan
{"title":"(1+1)和(2+1)维多分量Heisenberg超磁体模型","authors":"Mengyang Gao, Zhaowen Yan","doi":"10.1515/zna-2023-0078","DOIUrl":null,"url":null,"abstract":"Abstract The Heisenberg supermagnet model is a significant supersymmetric integrable model which is the superextension of the Heisenberg ferromagnet model. This paper is concerned with the construction of the multi-component (1+1) and (2+1)-dimensional Heisenberg supermagnet models with two distinct quadratic constraints of the superspin variables. In terms of the multi-component gauge transformation, we construct their multi-component gauge equivalent counterparts, i.e., the multi-component (1+1) and (2+1)-dimensional super nonlinear Schrödinger equations and fermionic nonlinear Schrödinger equations, respectively.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"13 1","pages":"597 - 604"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the multi-component Heisenberg supermagnet models in (1+1) and (2+1)-dimensions\",\"authors\":\"Mengyang Gao, Zhaowen Yan\",\"doi\":\"10.1515/zna-2023-0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Heisenberg supermagnet model is a significant supersymmetric integrable model which is the superextension of the Heisenberg ferromagnet model. This paper is concerned with the construction of the multi-component (1+1) and (2+1)-dimensional Heisenberg supermagnet models with two distinct quadratic constraints of the superspin variables. In terms of the multi-component gauge transformation, we construct their multi-component gauge equivalent counterparts, i.e., the multi-component (1+1) and (2+1)-dimensional super nonlinear Schrödinger equations and fermionic nonlinear Schrödinger equations, respectively.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":\"13 1\",\"pages\":\"597 - 604\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2023-0078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海森堡超磁体模型是海森堡铁磁体模型的超扩展,是一个重要的超对称可积模型。本文讨论了具有两种不同二次约束的超自旋变量的多分量(1+1)和(2+1)维Heisenberg超磁体模型的构造。在多分量规范变换方面,我们分别构造了它们的多分量规范等价对应物,即多分量(1+1)和(2+1)维超非线性Schrödinger方程和费米子非线性Schrödinger方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the multi-component Heisenberg supermagnet models in (1+1) and (2+1)-dimensions
Abstract The Heisenberg supermagnet model is a significant supersymmetric integrable model which is the superextension of the Heisenberg ferromagnet model. This paper is concerned with the construction of the multi-component (1+1) and (2+1)-dimensional Heisenberg supermagnet models with two distinct quadratic constraints of the superspin variables. In terms of the multi-component gauge transformation, we construct their multi-component gauge equivalent counterparts, i.e., the multi-component (1+1) and (2+1)-dimensional super nonlinear Schrödinger equations and fermionic nonlinear Schrödinger equations, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信