{"title":"线性化可压缩流动方程声散射矩阵的确定及其在热声稳定性分析中的应用","authors":"M. Meindl, Malte Merk, F. Fritz, W. Polifke","doi":"10.1142/S2591728518500275","DOIUrl":null,"url":null,"abstract":"The acoustic transmissions and reflections of plane waves at duct singularities can be represented with so-called scattering matrices. This paper shows how to extract scattering matrices utilizing linearized compressible flow equations and provides a comparative study of different governing equations, namely the Helmholtz, linearized Euler and linearized Navier–Stokes equations. A discontinuous Galerkin finite element method together with a two-source forcing is employed. With this method, the scattering matrix for a radial swirler of a combustion test-rig is computed and validated against the results of a fully compressible Large-Eddy-Simulation. Analogously, the scattering behavior of an axial swirler is investigated. The influence of acoustic-hydrodynamic interactions, viscous effects as well as unsteady boundary layers on the results is investigated for both configurations. A thermoacoustic stability analysis of the combustion test-rig housing the axial swirler is carried out, utilizing the scattering matrix of the swirler. Major influence of the reflections coming from the swirler on the thermoacoustic eigenfrequencies is found.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"44 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of Acoustic Scattering Matrices from Linearized Compressible Flow Equations with Application to Thermoacoustic Stability Analysis\",\"authors\":\"M. Meindl, Malte Merk, F. Fritz, W. Polifke\",\"doi\":\"10.1142/S2591728518500275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acoustic transmissions and reflections of plane waves at duct singularities can be represented with so-called scattering matrices. This paper shows how to extract scattering matrices utilizing linearized compressible flow equations and provides a comparative study of different governing equations, namely the Helmholtz, linearized Euler and linearized Navier–Stokes equations. A discontinuous Galerkin finite element method together with a two-source forcing is employed. With this method, the scattering matrix for a radial swirler of a combustion test-rig is computed and validated against the results of a fully compressible Large-Eddy-Simulation. Analogously, the scattering behavior of an axial swirler is investigated. The influence of acoustic-hydrodynamic interactions, viscous effects as well as unsteady boundary layers on the results is investigated for both configurations. A thermoacoustic stability analysis of the combustion test-rig housing the axial swirler is carried out, utilizing the scattering matrix of the swirler. Major influence of the reflections coming from the swirler on the thermoacoustic eigenfrequencies is found.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S2591728518500275\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S2591728518500275","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Determination of Acoustic Scattering Matrices from Linearized Compressible Flow Equations with Application to Thermoacoustic Stability Analysis
The acoustic transmissions and reflections of plane waves at duct singularities can be represented with so-called scattering matrices. This paper shows how to extract scattering matrices utilizing linearized compressible flow equations and provides a comparative study of different governing equations, namely the Helmholtz, linearized Euler and linearized Navier–Stokes equations. A discontinuous Galerkin finite element method together with a two-source forcing is employed. With this method, the scattering matrix for a radial swirler of a combustion test-rig is computed and validated against the results of a fully compressible Large-Eddy-Simulation. Analogously, the scattering behavior of an axial swirler is investigated. The influence of acoustic-hydrodynamic interactions, viscous effects as well as unsteady boundary layers on the results is investigated for both configurations. A thermoacoustic stability analysis of the combustion test-rig housing the axial swirler is carried out, utilizing the scattering matrix of the swirler. Major influence of the reflections coming from the swirler on the thermoacoustic eigenfrequencies is found.
期刊介绍:
The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics.
Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.