{"title":"基于焙烧温度变化及其抗氧化活性的螺旋藻合成ZnO纳米颗粒","authors":"Lusi Mustika Sari, Y. Rilda, Armaini","doi":"10.9734/csji/2023/v32i4850","DOIUrl":null,"url":null,"abstract":"The effect of different calcination temperatures on molecular structure, morphology, and antioxidant activity was investigated for Zinc Oxide nanoparticles synthesized using the sol-gel method and the capping agent Spirulina platensis. The prepared nanoparticle ZnO was calcined at 160°C, 300°C, and 600°C according to the results of the DTA-TGA analysis. The effect of different calcination temperatures on the characterization of the prepared samples was studied using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), and Field Emission-Scanning Electron Microscope (FE-SEM). In addition, the potential antioxidant activity of ZnO nanoparticles was investigated using the DPPH method. The results showed that FT-IR and XRD confirmed the presence of ZnO nanoparticles with good purity and small crystal size found in calcified ZnO nanoparticles at 600°C. FE-SEM confirmed the morphology ZnO nanoparticle produced at 600°C calcination are spherics, cubes, and nanorods with different particle sizes with range 50 – 150 nm. ZnO nanoparticles calcined at 600°C also showed higher antioxidant activity when compared to other calcination temperatures.","PeriodicalId":9803,"journal":{"name":"Chemical Science International Journal","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of ZnO Nanoparticles Using Spirulina platensis Based on Calcination Temperature Changes and Its Antioxidant Activity\",\"authors\":\"Lusi Mustika Sari, Y. Rilda, Armaini\",\"doi\":\"10.9734/csji/2023/v32i4850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of different calcination temperatures on molecular structure, morphology, and antioxidant activity was investigated for Zinc Oxide nanoparticles synthesized using the sol-gel method and the capping agent Spirulina platensis. The prepared nanoparticle ZnO was calcined at 160°C, 300°C, and 600°C according to the results of the DTA-TGA analysis. The effect of different calcination temperatures on the characterization of the prepared samples was studied using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), and Field Emission-Scanning Electron Microscope (FE-SEM). In addition, the potential antioxidant activity of ZnO nanoparticles was investigated using the DPPH method. The results showed that FT-IR and XRD confirmed the presence of ZnO nanoparticles with good purity and small crystal size found in calcified ZnO nanoparticles at 600°C. FE-SEM confirmed the morphology ZnO nanoparticle produced at 600°C calcination are spherics, cubes, and nanorods with different particle sizes with range 50 – 150 nm. ZnO nanoparticles calcined at 600°C also showed higher antioxidant activity when compared to other calcination temperatures.\",\"PeriodicalId\":9803,\"journal\":{\"name\":\"Chemical Science International Journal\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/csji/2023/v32i4850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/csji/2023/v32i4850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biosynthesis of ZnO Nanoparticles Using Spirulina platensis Based on Calcination Temperature Changes and Its Antioxidant Activity
The effect of different calcination temperatures on molecular structure, morphology, and antioxidant activity was investigated for Zinc Oxide nanoparticles synthesized using the sol-gel method and the capping agent Spirulina platensis. The prepared nanoparticle ZnO was calcined at 160°C, 300°C, and 600°C according to the results of the DTA-TGA analysis. The effect of different calcination temperatures on the characterization of the prepared samples was studied using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), and Field Emission-Scanning Electron Microscope (FE-SEM). In addition, the potential antioxidant activity of ZnO nanoparticles was investigated using the DPPH method. The results showed that FT-IR and XRD confirmed the presence of ZnO nanoparticles with good purity and small crystal size found in calcified ZnO nanoparticles at 600°C. FE-SEM confirmed the morphology ZnO nanoparticle produced at 600°C calcination are spherics, cubes, and nanorods with different particle sizes with range 50 – 150 nm. ZnO nanoparticles calcined at 600°C also showed higher antioxidant activity when compared to other calcination temperatures.