{"title":"可再生能源系统在以可持续的方式满足特大城市不断增长的能源需求中的重要性:大开罗的案例研究","authors":"Sara Abd Alla, V. Bianco, S. Simoes","doi":"10.1115/es2020-1629","DOIUrl":null,"url":null,"abstract":"\n Megacities are mainly located in developing countries and face challenges in building infrastructures to ensure modern and clean energy access to citizens while coping with lifestyle changes. This paper assesses the renewables impact on energy transition for megacities (supply and all demand sectors) using the Greater Cairo megacity as case study.\n The MARKAL-EFOM System (TIMES) model is applied to the Greater Cairo region to investigate how energy supply and demand will evolve till 2050, and what are the impacts in terms of final energy consumption, GHG emissions, as well as share of renewable energy sources consumption in total final energy consumption considering two different emissions mitigation caps, namely 50% and 80%.\n Compared to the business as usual scenario, the final energy consumption decreases of 46 PJ and 57 PJ respectively in the scenarios with the CO2 cap of 50% and 80%. Besides, the TIMES-Greater Cairo shows that the fossil free energy options are limited and thus, in order to meet the emission cap, it is necessary to deploy more energy efficient technologies than in the scenarios without the cap. Transport is the sector with the higher CO2 emissions contribution and the optimization results show that it may lower the environmental impact of 28% by 2050 with the sole deployment of more efficient technologies.","PeriodicalId":8602,"journal":{"name":"ASME 2020 14th International Conference on Energy Sustainability","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Importance of Renewable Energy Systems in Meeting Rising Energy Needs of Megacities in a Sustainable Way: Case Study of Greater Cairo\",\"authors\":\"Sara Abd Alla, V. Bianco, S. Simoes\",\"doi\":\"10.1115/es2020-1629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Megacities are mainly located in developing countries and face challenges in building infrastructures to ensure modern and clean energy access to citizens while coping with lifestyle changes. This paper assesses the renewables impact on energy transition for megacities (supply and all demand sectors) using the Greater Cairo megacity as case study.\\n The MARKAL-EFOM System (TIMES) model is applied to the Greater Cairo region to investigate how energy supply and demand will evolve till 2050, and what are the impacts in terms of final energy consumption, GHG emissions, as well as share of renewable energy sources consumption in total final energy consumption considering two different emissions mitigation caps, namely 50% and 80%.\\n Compared to the business as usual scenario, the final energy consumption decreases of 46 PJ and 57 PJ respectively in the scenarios with the CO2 cap of 50% and 80%. Besides, the TIMES-Greater Cairo shows that the fossil free energy options are limited and thus, in order to meet the emission cap, it is necessary to deploy more energy efficient technologies than in the scenarios without the cap. Transport is the sector with the higher CO2 emissions contribution and the optimization results show that it may lower the environmental impact of 28% by 2050 with the sole deployment of more efficient technologies.\",\"PeriodicalId\":8602,\"journal\":{\"name\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2020-1629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 14th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2020-1629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Importance of Renewable Energy Systems in Meeting Rising Energy Needs of Megacities in a Sustainable Way: Case Study of Greater Cairo
Megacities are mainly located in developing countries and face challenges in building infrastructures to ensure modern and clean energy access to citizens while coping with lifestyle changes. This paper assesses the renewables impact on energy transition for megacities (supply and all demand sectors) using the Greater Cairo megacity as case study.
The MARKAL-EFOM System (TIMES) model is applied to the Greater Cairo region to investigate how energy supply and demand will evolve till 2050, and what are the impacts in terms of final energy consumption, GHG emissions, as well as share of renewable energy sources consumption in total final energy consumption considering two different emissions mitigation caps, namely 50% and 80%.
Compared to the business as usual scenario, the final energy consumption decreases of 46 PJ and 57 PJ respectively in the scenarios with the CO2 cap of 50% and 80%. Besides, the TIMES-Greater Cairo shows that the fossil free energy options are limited and thus, in order to meet the emission cap, it is necessary to deploy more energy efficient technologies than in the scenarios without the cap. Transport is the sector with the higher CO2 emissions contribution and the optimization results show that it may lower the environmental impact of 28% by 2050 with the sole deployment of more efficient technologies.